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Where the wild things are: predicting hotspots of seabird
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Abstract. Marine Protected Areas (MPAs) provide an important tool for conservation of
marine ecosystems. To be most effective, these areas should be strategically located in a
manner that supports ecosystem function. To inform marine spatial planning and support
strategic establishment of MPAs within the California Current System, we identified areas
predicted to support multispecies aggregations of seabirds (“hotspots”). We developed
habitat-association models for 16 species using information from at-sea observations collected
over an ll-year period (1997-2008), bathymetric data, and remotely sensed oceanographic
data for an area from north of Vancouver Island, Canada, to the USA/Mexico border and
seaward 600 km from the coast. This approach enabled us to predict distribution and
abundance of seabirds even in areas of few or no surveys. We developed single-species
predictive models using a machine-learning algorithm: bagged decision trees. Single-species
predictions were then combined to identify potential hotspots of seabird aggregation, using
three criteria: (1) overall abundance among species, (2) importance of specific areas (“core
areas”) to individual species, and (3) predicted persistence of hotspots across years. Model
predictions were applied to the entire California Current for four seasons (represented by
February, May, July, and October) in each of 11 years. Overall, bathymetric variables were
often important predictive variables, whereas oceanographic variables derived from remotely
sensed data were generally less important. Predicted hotspots often aligned with currently
protected areas (e.g., National Marine Sanctuaries), but we also identified potential hotspots
in Northern California/Southern Oregon (from Cape Mendocino to Heceta Bank), Southern
California (adjacent to the Channel Islands), and adjacent to Vancouver Island, British
Columbia, that are not currently included in protected areas. Prioritization and identification
of multispecies hotspots will depend on which group of species is of highest management
priority. Modeling hotspots at a broad spatial scale can contribute to MPA site selection,
particularly if complemented by fine-scale information for focal areas.
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INTRODUCTION

Across the globe, marine ecosystems have been
exploited, disturbed, and altered, putting many species
at grave risk (Norse et al. 2005, Polldoro et al. 2008,
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Halpern et al. 2009, Ojeda-Martinez et al. 2009). In
response, marine spatial planning has emerged as a
comprehensive approach to improve management and
conservation of these ecosystems (Ray 2010). The
ultimate objective of marine spatial planning is to
analyze and allocate the distribution of human activities,
in space and time, in marine areas so as to achieve
ecological and economic objectives identified through a
political process (Douvere and Ehler 2009). Marine
reserves or marine protected areas (MPAs) have been
widely viewed as an effective way to advance marine
spatial planning and restore ecosystems and populations
(Boersma and Parrish 1999, Worm et al. 2003, Norse et
al. 2005). To be effective, however, marine spatial

2241



2242

planning and the establishment and management of
Marine Protected Areas (MPAs) require sound scientific
information.

Development of a scientific basis for the establishment
of protected areas in marine ecosystems has been lagging
compared to that in terrestrial habitats (Hyrenbach et al.
2000, Halpern 2003, Caifiadas et al. 2005, Game et al.
2009). The identification and protection of foraging
areas for marine predatory species such as seabirds is a
high conservation priority (Hooker and Gerber 2004).
Because seabirds feed on fish, squid, and plankton
species that support other marine top predators
(Polldoro et al. 2008), seabirds can also serve as
indicators of areas where energy flows rapidly from
lower trophic levels to top predators (Furness and
Camphuysen 1997, Hooker and Gerber 2004, Durant et
al. 2009; but see Grémillet and Charmantier 2010).

Marine birds and mammals aggregate at predictable
locations or “hotspots” where food availability is high
(Hunt et al. 1999, Caiadas et al. 2005, Piatt et al. 2006,
Suryan et al. 2006). Productivity in these areas is often
driven by topography and wind patterns, which create
oceanographic features that may concentrate prey and
are associated with measurements of sea-level height,
sea-surface temperature gradients, and chlorophyll
concentration (Hyrenbach et al. 2000, 2006, Ballance
et al. 2006, O’Hara et al. 2006, Yen et al. 2006, Ainley et
al. 2009, Garthe et al. 2009).

Here we ask whether widely available environmental
data, including those from remote-sensing satellites, can
be used to derive predictive models identifying multi-
species aggregations (“hotspots”) throughout the highly
productive California Current Large Marine Ecosystem
(hereafter, CCS; Ekstrom 2008). This large upwelling
ecosystem stretches from British Columbia, Canada, to
Baja California, Mexico, and seaward for hundreds of
kilometers (Fig. 1). The CCS supports many important
populations of marine wildlife as well as valuable
commercial fisheries (Halpern et al. 2009, Teck et al.
2010). Like most of the world’s oceans, the CCS has
recently suffered from overexploitation of fish stocks
and climatic and oceanographic anomalies (Bakun and
Weeks 2004), highlighting the need to protect important
wildlife areas. Hotspots for marine organisms have not
yet been identified for the CCS on an ecosystem-wide
basis. In addition, many areas in the CCS have been
inadequately surveyed, so the ability to develop a
comprehensive regional perspective on seabird distribu-
tions would help to advance marine spatial planning,
highlight areas in need of protection, and prioritize
future survey efforts.

In this paper we describe the development and
application of habitat-association models for a 16-
species assemblage of seabirds based on 11 years of
survey data spanning the geographic range of the CCS.
Model output provides predictive maps covering the full
range of the CCS, including areas where little or no
survey data are available. We use three criteria to
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combine predictions across the 16 species to highlight
different aspects of potential areas of seabird aggrega-
tion, all of which are relevant for marine spatial
planning. The three criteria reflect abundance, stan-
dardized across species; importance to individual species
(as indicated by ‘“core” areas); and persistence of
hotspots among years. Because the modeling is con-
ducted over the entire ecosystem, it enables us to
consider not only the location and identification of
individual MPAs, but also spatial relationships among
sites (Lascelles et al. 2009). Model results can therefore
inform the designations of MPAs and, more broadly,
marine spatial planning (Douvere and Ehler 2009).

There are few examples in which the distribution and
abundance of a large number of species have been
modeled over a large area and over a considerable time
period, especially so with respect to marine ecosystems.
Hence, the modeling approach and synthesis of results
presented here may provide a valuable approach for
application to other marine taxa as well as other regions
of the globe.

METHODS
Data collection and processing

Bird observational data.—Seabird observation data
were obtained from several research and monitoring
programs: California Cooperative Oceanic Fisheries
Investigation (CalCOFI), National Marine Fisheries
Service (NMFS) California Current Ecosystem Study
(National Oceanic and Atmospheric Administration
[NOAA] and PRBO Conservation Science), CSCAPE
and ORCAWALE (NOAA Southwest Fisheries), Line P
(Canadian Wildlife Service [CWS] of Environment
Canada [EC] and Fisheries and Oceans Canada), and
NMFS Rockfish Surveys (NOAA) (Appendix A).
Spatial coverage for the analysis lay between 52° N
and 30° N latitude and from the shoreline out to 600 km
from the mainland (Fig. 2). The northern boundary
corresponded to the approximate northern edge of the
California Current (Fig. 1); the southern and offshore
boundaries were dictated by the extent of survey
coverage (Fig. 2). Spatial coverage varied by cruise,
with some providing extensive but sparse coverage of the
entire west coast from Baja California to Vancouver
Island and others providing dense coverage of smaller
regions. Temporal coverage included the period from
October 1997 to November 2008 (Appendix A). Data
from the Sea-viewing Wide Field-of-view Sensor
(SeaWiFS) satellite were not available prior to October
1997, precluding the use of seabird data before that time
for the purposes of modeling.

Surveys used the strip-survey method (Tasker et al.
1984, Buckland et al. 1993) to quantify seabird
distribution and abundance (see, for example, detailed
descriptions in Clarke et al. 2003 and Yen et al. 2004).
The method employed for all surveys recorded birds
continuously while the survey vessel was under way: all
birds within a survey strip off one forequarter of the
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ship’s bow were counted and their behavior was
classified. The width of the strip being surveyed
depended on the survey vessel and weather conditions,
but was between 250 and 500 m, mostly 300 m (84% of
survey transects). Although the presumption is that all
birds encountered within the strip are detected and
recorded, it is likely that detectability varied as a
function of species (i.e., size and color) and exogenous
conditions (e.g., sea state, cloud cover). Nevertheless, we
feel that our approach was warranted because our
intention was not to estimate actual absolute density, in
which case some correction for bird flight speed and
direction would be required (e.g., Spear et al. 1992), but
rather to derive an index of relative density that can be
combined across species. Furthermore, we standardized
abundance across species, thus eliminating species-
specific differences in detectability from influencing
combined species results.

Each survey transect was divided into 3 km long
segments or “bins.” We used 3-km bins because previous
analysis indicated generally low levels of spatial auto-
correlation among adjacent bins at that scale (Yen et al.
2004), although autocorrelation is not a major concern
for predictive models such as ours (Diniz-Filho et al.
2003, Ferguson et al. 2006). Seabird observations and
survey transect data were represented by points corre-
sponding to the midpoint of a survey bin. Bin center
points were used for analysis of distance from land,
distance to isobaths, bathymetry, sea-surface tempera-
ture (SST), chlorophyll @ concentration (CHL), and sea-
surface height (SSH). For all cruises combined, 58 966
survey bins were used in the statistical analysis. We
controlled for area of the survey bin to standardize the
number of individuals detected per bin to the number of
individuals per square kilometer. In >75% of the
surveys the bin area was 0.9 km? (i.e., strip width =
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300 m X 3 km). Each observation included information
on GPS position, visibility, and species, number, and
behavior of animals observed. Counts of individuals of a
single seabird species, by behavior classification, were
summed within each bin (Appendix B).

Environmental data—Bathymetric data were obtained
in raster form from the General Bathymetric Chart of
the Oceans (GEBCO) with a cell size of 1 X 1 arc-minute
(approximately 1.85 X 1.5 km, exact dimensions of the
cell varying with latitude). Depth (in meters) for each
bin was obtained for each bin center point. We also
developed moving-window statistics for depth. For each
bathymetric grid cell, we calculated the mean, minimum,
maximum, and standard deviation of depth based on the
“focal” cell and the eight adjacent cells. Thus, each focal
cell was located within a group of nine cells (3 X 3 cells),
whose area was ~24 km>. We also calculated a “contour
index” that reflects topographic relief of the sea floor
within the same nine cells. Contour index was defined as

[(max. depth — min. depth)/max. depth - 100].

This index varied from 0 to 100, with higher values
indicating steeper bathymetry.

Distances from the bird-survey bin center points to
the mainland and to islands were calculated in ArcMap
9.2 (ESRI 2006) using shapefiles provided by California
Department of Fish and Game and ESRI. Distances
from the center points to the 200-m, 1000-m, and 3000-
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m depth isobaths were calculated from bathymetry data.
These three isobaths have been used in similar analyses
(e.g., Yen et al. 2005): inside the 200-m isobath is
considered the continental shelf, the 1000-m isobath is
indicative of the position of the continental shelf slope,
and the 3000-m isobath indicates the ocean floor.

Two sources of satellite-derived sea-surface tempera-
ture (SST) data were combined to maximize spatial and
temporal data coverage: Moderate Resolution Imaging
Spectroradiometer (MODIS) (Aqua and Terra) and
Advanced Very High Resolution Radiometer (AVHRR)
Pathfinder data sets. We used AVHRR SST data when
they were available. When AVHRR SST data were not
available, we used a predictive equation to estimate
AVHRR SST as a function of the available MODIS SST
value (R*>=0.96). The regression equation was based on
the set of cells that had both AVHRR and MODIS SST
values. The regression-derived estimates of AVHRR
SST were used when observed AVHRR SST data were
not available. We used daytime composite temperatures
over the 8-day period corresponding to the date of the
bird survey. Data cell sizes were, on average, 4.6 X 3.7
km.

Chlorophyll (CHL) concentration data (milligrams
per cubic meter) were obtained from the SeaWiFS
satellite. As with temperature, 8-day composite periods
were constructed to minimize missing data, and these
were matched with dates and center points of the survey
bin. Cell size was, on average, 9.3 X 7.3 km (as with
other metrics, exact dimensions varied with latitude).
Where SeaWiFS data were unavailable, we used data
from MODIS, processed as with SST (i.e., we used a
regression equation to predict SeaWiFS values on the
basis of MODIS values).

Sea-surface height (SSH) data were obtained from
multiple satellites with the same ground-track (including
Topex/Poseidon, Jason-1 + ERS, Envisat). We used a
composite value corresponding to a 7-day time period.
Original spatial coverage was global, with a cell size of
0.25 X 0.25 degrees (~28 km on one side X 22.0 km,
depending on latitude). SSH (in centimeters) for each
survey bin was obtained by matching the location and
date of the survey bin with the 7-day composite SSH
raster.

Data for predictive modeling—Physical and biological
data for the modeling process were available from 1997
to 2008; all months were used to develop the predictive
models themselves. However, we picked just four focal
months for the purposes of model predictions: October,
February, May, and July (representing fall, winter,
spring, and summer, respectively); predictions were
made for each of the four months in each year (1997
to 2008). We chose a “seasonal” approach to prediction
rather than producing month-by-month predictions
because the survey coverage was adequate at the
seasonal scale, but, in general, surveys did not provide
adequate month-by-month coverage of the study area to
justify 12 monthly predictions per year.
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Our choice of months reflected the seasonal cycle of
seabirds in the CCS (e.g., February is pre-breeding
period for those that breed in the CCS, May is early
breeding season, July is late breeding season, and
October is the nonbreeding period). With regard to the
annual cycle of physical oceanography, October occurs
within the “Oceanic” season; February falls within the
“Davidson Current” season; May occurs within the
middle of the “Upwelling” season; and July falls toward
the end of the “Upwelling” season (Ford et al. 2004).

Data used for predictions were similar to those used
for analysis except that only four months were used in
each year, as just described, and the satellite data were
based on monthly average values rather than §-day
values. Overall, 45 months were used for prediction
between October 1997 and October 2008. After process-
ing, geodetic datum, spatial extent, and cell size were
standardized for all data; the datum was WGS 84;
boundaries were limited to —137° W, 30° N, —117° W,
52° N; and the cell size was resampled to the standard
cell size of MODIS SST data (~4.6 X 3.7 km).

Single-species statistical analyses

For most of the species initially analyzed, only birds
observed foraging or on the water were included in the
analyses. For all gulls, terns, kittiwakes, albatrosses, and
storm-petrels, however, we included flying birds as well,
as these species often forage while flying (following
Jahncke et al. 2008) and often are not observed except
when flying (Clarke et al. 2003).

We selected species for analysis through a two-step
process. First, we selected all seabird species observed in
at least 300 bins (i.e., one or more individuals of the
appropriate behavior codes were observed in the survey
“bin”). This minimum represents ~0.5% of all survey
bins analyzed, and was used primarily to filter out rarer
species. Twenty-five species met this criterion. We then
conducted bagged decision-tree (BDT) analysis on each
of the 25 species.

We evaluated predictive adequacy of the resultant
BDT model by examining the proportion of deviance
explained for each species using test data (data not part
of the “training data” used to develop predictions).
Species models in which the proportion of deviance
explained exceeded 0.40 for test data were considered
further. For each of these species, we evaluated
goodness of fit by determining whether the drop in
predictive ability comparing training data and test data
(Hastie et al. 2009) was low to moderate; more
specifically, we determined whether the percentage of
deviance explained in the test data was between 60% and
100% that of the training data. All species that met the
first criterion (i.e., proportion of deviance explained in
test data > 0.40), also met the latter criterion. Of the 25
species examined, 16 species produced adequate predic-
tive models and were retained (Table 1; species summary
data in Appendix B). All but one of the species retained
is considered a species of concern by the Baja to Barrow
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Initiative of the Audubon Society (Table 1). In addition,
two of the 16 species are considered globally threatened,
near-threatened, or endangered by the TUCN: Black-
footed Albatross and Sooty Shearwater (Table 1).

Bagged decision-tree analysis.—We used bagged deci-
sion trees, one type of machine-learning methodology
(also referred to as “data mining”; Hochachka et al.
2007). Machine learning algorithms, and decision-tree
methodology in particular, have only recently become
more widely used in ecological studies (e.g., niche
modeling) in marine and terrestrial systems (De’ath
2007, Elith et al. 2008, Leathwick et al. 2008). Decision-
tree analysis uses binary “rules” to classify and predict
responses based on a set of predictor variables (Breiman
et al. 1984, Hastie et al. 2009). However, simple decision
trees are highly sensitive to the data at hand and can
provide predictions that “overfit” the data. Bootstrap
aggregation, or “bagging,” enhances the accuracy of the
decision tree by using a large number of bootstrapped
data sets (an “ensemble”; see Efron and Tibshirani 1993)
and performing a separate decision-tree analysis on each
data set (Breiman 1996, Hochachka et al. 2007, Hastie et
al. 2009). The predictions from each decision tree are
then combined and averaged to produce a final
prediction. BDT analysis and similar machine-learning
methods are discussed in an ecological context by Elith
et al. (2008).

There are a number of strengths that make BDT a
good choice for this study. (1) The method has been
shown to perform well in terms of prediction (Dietterich
2000, Hochachka et al. 2007); (2) the method makes use
of observations that have missing values for some of the
predictor variables; (3) the method is nonparametric
(i.e., no assumption is made about a particular shape of
the response function to a predictor variable); (4) a large
number of predictor variables can be incorporated into
the model (Guyon and Elisseeff 2003); and (5) interac-
tions of predictor variables are incorporated into the
final models and these do not have to be specified. This
last feature is particularly relevant to this study: because
latitude and distance from land were two of the
predictor variables, BDT allowed for the effects of other
environmental variables (e.g., SST) to vary across the
spatial range of the study area. In addition, “day of
year” and variables reflecting annual variation were also
included in BDT models; hence BDT allowed for the
effect of environmental variables to vary within and
among years.

We used the recursive partitioning package (rpart)
within the R statistical programming language (version
2.10.1, R Development Core Team 2009) for the
analysis. Custom code developed by D. Fink was used
to implement the bagging, prediction, model averaging,
and model fit (Hochachka et al. 2007). We used BDTs to
develop predictive models for each of the 16 species. The
BDT models were used to make predictions for the
entire region of the California Current in each of four
months, in each year. As a first step, we partitioned 90%
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TABLE 1.
Barrow Initiative (B2B) and its IUCN status.
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Seabird species analyzed and modeled. The table also indicates each species’ status as a species of concern in the Baja to

Species code Common name Scientific name B2B IUCN status
BFAL Black-footed Albatross Phoebastria nigripes X endangered
BOGU Bonaparte’s Gull Larus philadelphia X least concern
BRAC Brandt’s Cormorant Phalacrocorax penicillatus X least concern
BRPE Brown Pelican Pelecanus occidentalis X least concern
CAAU Cassin’s Auklet Ptychoramphus aleuticus X least concern
CAGU California Gull Larus californicus X least concern
COMU Common Murre Uria aalge X least concern
FTSP Fork-tailed Storm-Petrel Oceanodroma furcata X least concern
GWGU Glaucous-winged Gull Larus glaucescens X least concern
HEEG Heermann’s Gull Larus heermanni X least concern
HERG Herring Gull Larus argentatus least concern
LHSP Leach’s Storm-Petrel Oceanodroma homochroa X least concern
RNPH Red-necked Phalarope Phalaropus lobatus X least concern
SAGU Sabine’s Gull Xema sabini X least concern
SOSH Sooty Shearwater Puffinus griseus X near-threatened
WEGU Western Gull Larus occidentalis X least concern

Notes: In addition, nine analyzed species did not yield adequate predictive models (see Methods: Single-species statistical
analyses): Black-legged Kittiwake (Rissa tridactyla), Rhinoceros Auklet (Cerorhinca monocerata), Black-vented Shearwater
(Puffinus opisthomelas), Red Phalarope (Phalaropus fulicarius), Pacific Loon (Gavia pacifica), Pomarine Jaeger (Stercorarius
pomarinus), Northern Fulmar (Fulmarus glacialis), Cook’s Petrel (Pterodroma cookii), and Pink-footed Shearwater (Puffinus

creatopus).

of the data for use during model building (i.e., training),
leaving 10% available for testing. For each predictive
model, we used an ensemble of 500 bootstrapped data
sets obtained from the training data (Hochachka et al.
2007). A priori tests with these data showed that there
was little improvement in the predictive ability of the
bagged ensemble beyond 500 bootstrapped data sets.
We assumed a Poisson distribution for the response
variable (birds detected per survey bin) in our BDT
analysis.

Variable selection.—We identified 20 habitat variables
as potentially meaningful for inclusion in the modeling
(Table 2). We arrived at this selection of variables by
considering previous studies on seabird-habitat rela-
tionships, in general and in the CCS in particular (e.g.,
Yen et al. 2004, Ainley et al. 2009, Tremblay et al. 2009),
and the limitations of data availability for the study
period and study area.

Date, upwelling transition, and oceanographic indi-
ces.—Day of year was included, allowing for seasonal
fluctuations in abundance for individual species. We also
used “transition date,” the date at which the upwelling
regime in the CCS changes from a winter pattern to a
spring pattern. Transition date demonstrates strong
year-to-year variation (Holt and Mantua 2009).
Although transition dates in the CCS show regional
variation, we were unable to quantify the variations in
transition date throughout the system. Instead, we relied
on a single annual value based on upwelling and winds
(Method 1 of Holt and Mantua 2009), obtained from
data near the Farallon Islands in Central California (J.
Jahncke and J. Roth, unpublished manuscript). BDT
allows for an interaction between transition date and
latitude, so the effect of transition date in the analysis
can vary with latitude. Use of a single transition date in
each year for the CCS in the BDT analysis may be an

oversimplification. However, it was not our intention to
develop a detailed accounting of transition date itself,
but rather to characterize how variation in abundance of
the target seabird species was related to variation in
year, date, and related variables.

Three oceanographic indices were included: Southern
Oscillation Index, Pacific Decadal Oscillation, and
Northern Pacific Gyre Oscillation (Di Lorenzo et al.
2008). Index values were calculated for two time periods:
the three-month period that included the month of
survey and the two previous months, as well as the three
months prior to that period (i.e., 3-5 months prior to the
month of survey).

Multispecies hotspot determination

We used three criteria to identify multispecies
hotspots. All three were implemented at the scale of a
single “prediction cell,” ~4.6 X 3.7 km.

Criterion 1: Standardized abundance, summed over all
species.—Predicted densities were standardized for each
species such that mean density =0 and SD of density=1.
Standardization was implemented before combining
results across species so that each species contributed
equal weight to the composite results. Otherwise, species
with very high mean abundance would swamp less
common species. Species with high variance also could
have a large influence on the composite results. We use
the term “abundance” henceforth, but recognize that
observations and predictions refer to individuals detect-
ed during surveys, which only provide an index of
abundance. Note that this standardization accounted
for possible differences in detectability among species.
The standardized abundance values were then summed
over all species for the individual predicted cell. We refer
to this metric as “summed standardized abundance” to
emphasize that it is a multispecies metric and not a
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TaBLE 2. Variables included in predictive models of seabird hotspots.

Variable Type of variability Scale (spatial or temporal)
Latitude spatial NA
Depth, minimum spatial 5.6 km
Depth, mean spatial 5.6 km
Contour index spatial 5.6 km
Distance to 200-m isobath spatial NA
Distance to 1-km isobath spatial NA
Distance to 3-km isobath spatial NA
Distance to land spatial NA
Chlorophyll spatial and temporal 9.3 km, 8 days
SST (sea-surface temperature) spatial and temporal 4.6 km, 8 days
SSH (sea-surface height) spatial and temporal 28 km, 7 days
Day of year temporal within year
Transition date temporal annual
Year temporal annual
SOI, 0-2 months before temporal 3 months
PDO, 0-2 months before temporal 3 months
NPGO, 0-2 months before temporal 3 months
SOI, 3-5 months before temporal 3 months
PDO, 3-5 months before temporal 3 months
NPGO, 3-5 months before temporal 3 months

Notes: Inside the 200-m isobath is considered the continental shelf; the 1000-m isobath indicates
the position of the continental shelf slope; the 3000-m isobath indicates the ocean floor. Transition
date is the date at which the upwelling regime changes from a winter pattern to a spring pattern.
SOI is the Southern Oscillation Index, PDO is the Pacific Decadal Oscillation, and NPGO is the
Northern Pacific Gyre Oscillation. Data sources are: AVHRR Pathfinder v5 SST data from the Jet
Propulsion Laboratory’s Physical Oceanography Distributed Active Archive Center (http://
podaac.jpl.nasa.gov/DATA_CATALOG/avhrr.html); MODIS Aqua and Terra SST and CHL
data from OceanColor Web (http://oceancolor.gsfc.nasa.gov); bathymetric data from GEBCO
(http://www.gebco.net/data_and_products/gridded_bathymetry_data/); SeaWiFS CHL data from
OceanColor Web (http://oceancolor.gsfc.nasa.gov); sea-surface height data from multiple satellites
compiled by AVISO (http://www.aviso.oceanobs.com/en/home/index.html). “NA” means not

applicable.

single-species metric. These calculations were carried out
by month and year, and then results were averaged over
years by month as well as averaged over all years and
months.

Criterion 2: Important “core” areas for individual
species—For each species, we ranked all prediction cells
according to the predicted abundance of that species by
month and year. We then identified the smallest set of
cells that together constituted 25% of the species’ total
predicted abundance within the study region. These
“highest predicted density” cells were considered to
indicate a species’ “core area” and were assigned a score
of 2. The set of cells that together made up the next
quartile of the species’ total abundance based on
predicted density, were considered important “shoulder”
areas and were assigned a score of 1. Thus, the smallest
set of cells that constituted 50% of the species’ total
predicted abundance within the study region received a
score of 2 (“core”) or 1 (“shoulder). All remaining cells
received a score of 0. We chose these two criteria (top
25% and 50% of predicted total abundance), on the basis
of previous studies of habitat use (e.g., Hyrenbach et al.
2002) and after preliminary evaluation of several
thresholds (e.g., top 10%, top 75%).

Importance was calculated for each species and a
weighted average was then calculated over all species.
The average was weighted by assigning a weight that
was inversely proportional to the number of cells

making up the 25% core area for a species. Thus, if
species X required 100 cells to reach the 25% criterion
whereas species Y required 1000 cells, each “core” cell
for species X received 10 times the weight of each “core”
cell for species Y. The weighting function was scaled to
have mean = 1. We used this weighting function to
normalize the contribution of each species to the overall
“importance” score. More specifically, the product of
the weighting factor and the number of core cells for
each species was the same across all species. Species-
specific abundances were calculated first (by month,
averaged over all years, and overall, averaged over all
months and years), and then species-specific importance
scores were determined.

Criterion 3: Persistence of hotspots across years.—This
index was calculated for individual species for each
month separately (February, May, July, and October)
and for all months combined. The number of years (out
of 11) that a cell was in the top 5% of predicted summed
standardized abundance was scored (i.e., in the 95th
percentile of all prediction cells for that month or for all
months combined). Note that the persistence score itself
was only calculated within a specified month or set of
months; thus our measure of persistence reflected
variation among years but not fluctuations due to
seasonal changes in abundance of a species.

Combining all three criteria—To synthesize informa-
tion on all three criteria, we first standardized the
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TasLe 3. Important and moderately important variables for each species-specific predictive model.
Proportion of variance explained for each species
Variable BFAL BOGU BRAC BRPE CAAU CAGU CcoMUu
Latitude 0.100 0.044 0.060 0.111 0.039 0.058 0.031
Minimum depth 0.016 0.065 0.022 0.249
Mean depth 0.021 0.040 0.034 0.077
Contour index 0.040 0.063 0.156 0.015 0.020
Distance to 200-m isobath 0.099 0.158 0.023 0.053 0.044 0.024 0.042
Distance to 1000-m isobath 0.106 0.046 0.027 0.033 0.090 0.024 0.026
Distance to 3000-m isobath 0.024 0.021 0.014 0.065 0.065 0.116
Distance to nearest land 0.021 0.073 0.275 0.248 0.070 0.201 0.044
Chlorophyll 0.051 0.015 0.016
SST 0.024 0.026 0.015
SSH 0.026 0.032 0.019 0.042
Day of year 0.038 0.106 0.017 0.015 0.081 0.119 0.031
Year
Transition date
SOI 0-2 months before 0.018
PDO 0-2 months before 0.035 0.025
NPGO 0-2 months before 0.033
SOI 3-5 months before
PDO 3-5 months before
NPGO 3-5 months before 0.053
Total proportion deviance explained 0.602 0.653 0.717 0.647 0.716 0.656 0.738

Notes: For each species-specific model, the top 10 variables (out of 20) and the proportion of deviance explained for each
variable are shown. Variables with a proportion of deviance explained >0.075 are in boldface (see Results: Predictor variables).

Species codes are in Table 1.

hotspot values for each criterion separately. We
calculated z scores for each criterion, such that mean z
score = 0 and SD = 1. However, because there was
strong skew of importance and summed standardized
abundance, we first log-transformed these hotspot scores
before applying the z-transformation. We added a
constant before log-transforming such that minimum
log value for summed standardized abundance and for
importance was 0. Thus, for these two criteria, we
essentially standardized values to a geometric mean of 0
rather than arithmetic mean of 0. Persistence scores were
not skewed so were not log-transformed. Finally, we
averaged z scores across the three criteria.

REsuULTS
Individual species models

Predictor variables—The proportion of deviance
explained in the training data set for the set of predictor
variables exceeded 0.520 for all species; for five species it
exceeded 0.700 (Table 3). Also shown in Table 3 is the
proportion of deviance explained for individual vari-
ables, when the other 19 variables were included in the
model. For example, the predictive model explained
>60% of the deviance in the Black-footed Albatross
training data set. The best predictive variable for this
species was distance to the 1000-m isobath (10.6% of
deviance explained), which reflects proximity to the shelf
slope. Proportion of deviance explained for the top 10
most predictive variables for each species are shown in
Table 3; results for the other 10 variables, for each
species, are not shown. We emphasize that the predictive
models themselves include all 20 variables. Table 3 also
identifies “important” predictor variables, defined as

variables for which the proportion of deviance explained
> (.075, given that the other 19 variables are included in
the predictive model. Variables among the top 10 but
with proportion of deviance explained <0.075 are
considered “moderately important.”

Latitude was included in the set of top 10 variables for
every species and, for several species, this variable
accounted for a large proportion of the total deviance
(in particular, for Fork-tailed Storm-Petrel and
Glaucous-winged Gull; Table 3). At least one of the
three depth variables was an important or moderately
important predictor (i.e., among the top 10 predictor
variables) for every species except Sooty Shearwater.
For Cassin’s Auklet, the contour index was the strongest
predictor variable among the 20. For Common Murres,
minimum depth (within the nine-cell matrix) was the
strongest predictor variable.

Distance to nearest land was an important predictor
for nearly every species and, for seven species it was the
predictor accounting for the highest proportion of
deviance among the 20 variables (Table 3). Distances
to the 200-m isobath, to the 1000-m isobath, and to the
3000-m isobath were all included among the top 10
variables in terms of proportion of deviance explained,
for nearly all species.

Chlorophyll was a moderately important predictor for
only eight species, and for SST this was the case for only
six species. Among variables derived from remote-
sensed satellite data, SSH was the most important
predictor. For Sabine’s Gull, SSH was the most
important predictor of all variables considered, and for
Fork-tailed Storm-Petrel, Red-necked Phalarope, and
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TasLE 3. Extended.
Proportion of variance explained for each species

FTSP GWGU HEEG HERG LHSP RNPH SAGU SOSH WEGU
0.240 0.220 0.065 0.035 0.072 0.045 0.079 0.039 0.110

0.070 0.036 0.032 0.028 0.020

0.016 0.014 0.090 0.024 0.032 0.017 0.027
0.016 0.024 0.016 0.015

0.023 0.042 0.083 0.023 0.059 0.040 0.023
0.065 0.015 0.051 0.041 0.039 0.017
0.014 0.014 0.023 0.039 0.043 0.022 0.038 0.025

0.040 0.263 0.031 0.079 0.124 0.063 0.180 0.301
0.061 0.068 0.028 0.017 0.048

0.068 0.027 0.017
0.136 0.051 0.025 0.025 0.097 0.220 0.084 0.017
0.028 0.056 0.177 0.059 0.045 0.038 0.036 0.060 0.030
0.042 0.103 0.031
0.040
0.019
0.016 0.030
0.047 0.028 0.065 0.028

0.694 0.654 0.794 0.582 0.527 0.662 0.592 0.710 0.663

Sooty Shearwater, it was the second most important
predictor.

Day of year, reflecting seasonal variation in abun-
dance and/or occurrence, was also included in all
species’ models, although it was never the most
important predictor. With the exception of Glaucous-
winged Gull, year was generally not an important
predictor. Transition date was never included among
the top 10 variables for any species. The generally low
predictive contribution of these last two variables, year
and transition date, which reflect annual variation, may
be attributed to the inclusion of other variables in the
species models that may have better captured year-to-
year variation in relevant ecological influences, specifi-
cally CHL, SST, SSH, SOI, PDO, and NPGO.

Among the six oceanographic variables considered
(three indices X two time periods), NPGO 3-5 months
previous to the month of the cruise was more often a
moderately important predictor variable than the other
five variables, but in no case did an oceanographic index
demonstrate a large proportion of deviance explained
(proportion of deviance < 0.050; Table 3).

To summarize, the variables with highest predictive
value were informative on location, especially proximity
to land and to the various isobaths.

Single-species predictive maps.—We used the predic-
tive models (summarized in Table 3) to create predictive
maps for each of the four months within each year (4 X
11 years, plus a 12th year for October =45 maps in total)
for each species. To illustrate the species-specific
predictions, we present results for one species, Cassin’s
Auklet (Ptychoramphus aleuticus). The pattern of
predicted abundance of this species differed somewhat
between February (averaged over all years; Fig. 3A) and
May (averaged over all years; Fig. 3B). In February

(immediately before the onset of breeding), only two
areas of high predicted abundance for Cassin’s Auklet
are evident: off the northwest tip of Vancouver Island
and surrounding San Nicolas Island, one of the
California Channel Islands. By May (middle of the
breeding season), areas of high abundance are more
widespread, although still close to the coast, with San
Nicolas and Santa Catalina Islands in southernmost
California being the only hotspots that are some
distance from the coast. In May, nearly the entire
region of northern California and southern Oregon has
high predicted abundance (Fig. 3B); single-species maps
for each of the 16 species are available online.'

We can also use Cassin’s Auklet to illustrate the
calculation of importance and persistence for a single
species (Fig. 4). The pattern of importance was similar
for all four months (importance calculated over all
seasons shown in Fig. 4A). The “core” areas identified
include northern Vancouver Island, northern California
(from the Golden Gate north), and southern California
(Channel Islands and San Diego region), but excluding
the mainland coast of southern California. For this
species, areas that, on average, demonstrated high
predicted abundance (Fig. 3) also demonstrated high
consistency in predicted abundance among years (Fig.
4B), although this was not true for every species.

Multispecies hotspot determination

Predicted hotspots based on standardized abundance,
summed over all species, showed strong seasonal
variation. For February, the Gulf of the Farallones
and nearby Monterey Bay constituted the only clear
hotspot region, although the western Channel Islands

10 (www.prbo.org)
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Fic. 3. Cassin’s Auklet (Ptychoramphus aleuticus) predicted abundance (birds/km?) by specified month, averaged over all years,

for (A) February and (B) May.

appeared as an incipient hotspot (Fig. 5A). The northern
California Current demonstrated no hotspots. In
contrast, in May the coast of the Olympic Peninsula
was a very evident hotspot, as was Heceta Bank, north
of Cape Blanco in Oregon (see Fig. 1 for locations). The
Gulf of the Farallones and Monterey Bay continued to
show high summed standardized abundance in May.
Other spatially restricted hotspots were found near Cape
Mendocino in northern California and the western
Channel Islands (Fig. 5B). In contrast, in October the
Gulf of the Farallones/Monterey Bay region demon-
strated relatively low summed abundance, with the
Olympic Peninsula/southern Vancouver Island being an
area of moderately high abundance, together with
southern California (Fig. 5D).

Averaging across seasons, areas of high summed,
standardized abundance were associated with the
Olympic Peninsula coast, Heceta Bank, Cape

Mendocino, Gulf of the Farallones, Monterey Bay, the
Channel Islands, and the mainland coast of southern
California (Fig. 6A). The pattern for hotspots identified
by the importance criterion was generally similar to that
of summed, standardized abundance (Fig. 6B).

No hotspots, whether for summed abundance or
importance, were apparent more than ~90 km offshore
(Fig. 6A, B).

There was also substantial overlap between areas
identified as highly persistent and those identified as
having high summed abundance and/or high species
importance (compare Fig. 6C with Fig. 6A, B).
However, some areas showing high relative persistence
were not as evident using summed abundance or
importance criteria, such as the northwest tip of
Vancouver Island. Conversely, Heceta Bank demon-
strated high summed abundance and high importance,
but was not a persistence hotspot (Fig. 6C).
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FiG. 4. Predicted (A) importance and (B) persistence for Cassin’s Auklet. Importance was calculated over all years and seasons
for each species, and a weighted average was then calculated over all species. Cells were sorted according to predicted densities. We
identified the smallest set of cells (i.e., cells with the highest predicted density) that together constituted 25% of the species’ total
predicted abundance; these were scored as “2” (“core” cells). The next-highest set of cells that constituted 50% of the species’ total
predicted abundance, but were not “core” cells, were scored as “1” (“shoulder” cells). All other cells were scored 0 (see Criterion 2:
Important “core” areas for individual species). Persistence was calculated over all seasons; shown is the number of years (out of 11)
that the prediction cell is in the 95th percentile in terms of predicted abundance. The persistence score for a cell was calculated by
individual month, as well as over all seasons. Because the persistence score was only calculated within a specified month, it reflected
variation among years, but not seasonal fluctuations in abundance of a species.

Weighting all three criteria equally produced a
combined-criterion hotspot map for the California
Current (Fig. 7). All hotspots identified using the
combined criterion were evident, with one or more of
the single criteria. We highlight three areas that appeared
as hotspots, but that are not currently included in Marine
Protected Areas, or only partially so: Heceta Bank, Cape
Mendocino, and the southern Channel Islands (Fig. 7).

Discussion

In this study, we have collected and synthesized at-sea
observations of seabird aggregations and combined this

information with data on physical and biological
features of the marine environment to predict the
distributions of multiple species of seabirds over the
broad reach of the California Current System. Through
the use of data collected in a standardized manner and
applying a single set of analytical procedures, we were
able to combine information from multiple organiza-
tions and investigators to cover a large geographic area
and draw on 11 years of seabird monitoring. This has
provided a robust basis for identifying aggregation
hotspots of seabird species, one that emphasizes patterns
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Hotspot maps for each criterion, calculated over all seasons, for all 16 seabird species. (A) Standardized abundance,

averaged over all years, summed over all species. (B) Importance, a weighted average calculated over all years and species (see
Methods: Multispecies hotspot determination: Criterion 2: Important “core” areas for individual species). (C) Persistence (number of
years that the prediction cell is in the 95th percentile in terms of summed standardized abundance).

emerging at a large spatial scale and over a temporal
scale that exceeds a decade in duration.

Conducting an analysis at this broad spatial and
temporal scale inevitably involves trade-offs. Our
information on SSH was obtained at a spatial scale
(28 X ~22 km cell) that provides only a coarse resolution
of oceanic currents and eddies, yet proximity to eddies
has been identified as an important predictor in other
studies (Ballance et al. 2006, Hyrenbach et al. 2006,
Louzao et al. 2006, Ainley et al. 2009). At a fine spatial
scale, distributions of seabirds are influenced by a wide
array of factors, such as salinity, water-column struc-
ture, depth of chlorophyll maximum, fine-scale dynamic
height, or prey densities (Ainley et al. 2009, Tremblay et
al. 2009), for which data are not available at the scale of
the entire CCS.

Our focus in this analysis, however, was not on the
fine-scale use of habitats by particular seabird species in

localized areas, but on the identification of multispecies
foraging aggregations across the entire California
Current. This is the scale at which initial decisions are
being made regarding priorities for MPA locations and
for which information about the likelihood of occur-
rence of multiple species of interest is critical (Ocean
Policy Task Force 2010, Ray 2010).

To identify areas supporting multispecies aggrega-
tions of seabirds, we relied on three criteria, reflecting
abundance, importance, and persistence of locations.
This approach has the advantage of not relying on a
single criterion, whose choice may be open to question.
Instead, the application of all three criteria provides a
robust methodology for combining predictions across
species. At the same time, the use of multiple criteria
allows the opportunity to identify a hotspot that might
be overlooked if one relied upon only a single criterion.

«—

FiG. 5.

Standardized abundance, by month, summed over all 16 seabird species and averaged over all years for: (A) February,

(B) May, (C) July, and (D) October. For each species and cell, mean predicted abundance (estimated number of birds observed per
cell, adjusted for survey cell area) was determined (calculated over all years, separately by month). For each species, all mean
abundance values were standardized to mean abundance = 0 and SD of abundance = 1. Standardized values were then summed
over all species.
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and then averaged (see Methods: Multispecies hotspot determination;, Combining all three criteria). Insets show hotspot areas that
are currently not, or only partially, protected: Heceta Bank, Cape Mendocino region, and southern Channel Islands. The boundary
of the Channel Island National Marine Sanctuary is shown in the inset for southern Channel Islands.

Software to identify potential reserve locations (par-
ticularly Zonation) has been developed that considers
multiple criteria (Moilanen and Wintle 2006, Moilanen
2007). Zonation has been used to model probability of
occurrence (e.g., Moilanen 2007), but it can also be
implemented using predicted abundances. To implement
this program requires specifying importance of connec-
tivity for each species. In contrast, software such as
Marxan (Ball and Possingham 2000, Wilson et al. 2005)
has an important limitation: it can identify reserve
solutions, but it does not provide hierarchic ranking of
priority areas, which was one of our goals.

Hyrenbach et al. (2000) identified three types of
features to explain aggregations of pelagic predators:
static bathymetric features, persistent hydrographic

features (e.g., fronts occurring at predictable locations),
and ephemeral hydrographic features (cf. Hooker et al.
1999). Our results point to the value of the first class of
features in identifying hotspots. At the broad spatial
scale of the California Current, we found that seabird
foraging hotspots were best predicted by bathymetric
features, especially those related to ocean depth and
proximity to or distance from land. As a result, the
spatial location of predicted hotspots was fairly consis-
tent from season to season and year to year. The
consistency of predicted locations supports the value of
permanently sited MPAs.

Oceanographic variables, other than SSH, made only
modest contributions to the predictive models.
However, the rankings of variables in the predictive
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models also reflect the spatial scale of the modeling. In
explaining variation in abundance of individual species
from British Columbia to southern California, it is not
surprising that bathymetric or topographic variables
predominate over variables such as SST or change in
SST, which may contribute to variation in abundance at
finer spatial and temporal scales (10 km or less; variation
among days or weeks). In fact, SST has often been
found to be an important explanatory variable of
seabird distribution and abundance in studies conducted
at finer spatial scales than that of our analysis (Ainley et
al. 2009, Garthe et al. 2009, Tremblay et al. 2009).

Although our focus here is on a multispecies
assessment, there was considerable variation among
species in the importance of specific predictor variables
(Table 3). For example, distance to nearest land was a
highly important variable for some species but had low
predictive value for other species, such as the Fork-tailed
Storm-Petrel. Differences in the importance of predictor
variables are not surprising, given the variety of body
sizes, food habits, and life-history strategies among the
16 species that we considered. For example, the
distribution of some species (e.g., Sooty Shearwaters)
may be determined during migration, when pelagic
foraging areas are of high value, yet for others (e.g.,
Common Murres) the critical period may be the
breeding season, when foraging areas near breeding
colonies are most important (Hooker and Gerber 2004,
Lascelles et al. 2009). Information on the location and
size of breeding colonies is not yet available for much of
the California Current, although other studies (Louzao
et al. 2006, Ainley et al. 2009) have incorporated such
information into analyses of spatial distribution at a
more local scale.

Because species vary in features of their ecology and
life history, the hotspots predicted for one species may
not be the same as those predicted for other species. The
identification of multispecies hotspots as candidate
MPAs will therefore depend on which set of species is
considered. This, in turn, will reflect management and
conservation priorities. If these priorities emphasize a
few individual species (e.g., threatened or endangered
species), the predicted hotspots will differ from those
identified by considering a wide variety of species, as we
have done here. MPAs are intended to protect (insofar
as possible) entire functioning ecosystems, so a multi-
species approach, even one focused on a particular
taxon such as seabirds, seems not only appropriate but
necessary.

Although current legislation may provide only limited
protection for marine wildlife, the National Marine
Sanctuary System provides a legal framework that could
facilitate development of a network of MPAs. Many of
the predicted hotspots that we identified are currently
within National Marine Sanctuary boundaries, includ-
ing the Cordell Bank, Gulf of the Farallones, and
Monterey Bay National Marine Sanctuaries (NMS) in
central California; Channel Island NMS in southern
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California; and Olympic Coast NMS in Washington.
Other predicted hotspots, however, are not currently
protected. In particular, the broader area around the
Channel Islands that is not included in the Channel
Islands NMS and the coastal area north of Cape
Mendocino in northern California to Heceta Bank on
the central Oregon coast represent clear gaps in current
marine protection. Our analysis also identified two
additional gaps farther north. The Swiftsure,
Amphetrite, and La Perouse Banks complex immedi-
ately north of the Olympic Coast NMS is not protected,
nor is the area off the northern end of Vancouver Island.
Efforts by CWS/Environment Canada to develop a
Marine Wildlife Area (equivalent to an MPA) adjacent
to the Scott Islands off the northwest coast of
Vancouver Island are currently under way (K.
Morgan, personal communication).

Human threats to the marine ecosystem may be as
great in northern California, Oregon, and Washington
as in central and southern California (Halpern et al.
2009). Combined with our results, the analysis of
Halpern et al. (2009) indicates that the hotspot region
extending from Cape Mendocino to Heceta Bank may
represent a high priority for conservation. This is also an
area that has not been extensively surveyed for seabirds
in comparison to areas farther north in Washington and
southern British Columbia or farther south in central
and southern California.

The CCS-wide modeling presented here has the
advantage of allowing us to compare areas of predicted
aggregation in one part of the CCS with areas elsewhere
in the CCS, areas that may not have been well studied in
the past. For international and national entities, it is
useful to compare hotspots in British Columbia with
those in California in order to prioritize efforts. Models
developed on a finer scale may capture habitat
associations that are more relevant to individual species,
providing predictions that may be useful in refining the
placement of protected areas. Broadscale CCS-wide and
fine-scale local modeling efforts can play complementary
roles in determining priorities for targeting areas for
protection or in identifying areas deserving of systematic
surveys to support their designation as MPAs.

Marine ecosystems are dynamic, and are likely to
become even more dynamic over the coming decades as
climate change and biotic depletion (Hilborn et al. 2003)
impact the spatial and temporal distribution of marine
hotspots in the CCS. To the extent that hotspots are
anchored by fixed bathymetric and geographic features,
they may be resilient to such changes. Determining the
limits of resiliency may be essential to forward-looking
marine spatial planning and making wise investments in
MPAs.
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