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Summary

Although geographic variation in an organism’s traits is

often seen as a consequence of selection on locally adaptive
genotypes accompanied by canalized development [1],

developmental plasticitymayalsoplay a role [2, 3], especially
in behavior [4]. Behavioral plasticity includes both individual

learning and social learning of local innovations (‘‘culture’’).
Cultural plasticity is the undisputed and dominant explana-

tion for geographic variation in human behavior. It has
recently also been suggested to hold for various primates

and birds [5], but this proposition has been met with wide-
spread skepticism [6–8]. Here, we analyze parallel long-term

studies documenting extensive geographic variation in
behavioral ecology, social organization, and putative culture

of orangutans [9] (genusPongo).Weshow thatgeneticdiffer-
ences among orangutan populations explain only very little

of the geographic variation in behavior, whereas environ-
mental differences explain much more, highlighting the

importance of developmental plasticity. Moreover, variation
in putative cultural variants is explained by neither genetic

nor environmental differences, corroborating the cultural

interpretation.Thus, individualandculturalplasticityprovide
a plausible pathway toward local adaptation in long-lived

organisms such as great apes and formed the evolutionary
foundation upon which human culture was built.
Results

In this study, we use the predictions of a cultural plasticity
model that, if confirmed, allow us to reject other develop-
mental causes of geographic variation in behavior of orangu-
tans (Pongo spp.), such as canalized development under
strong genetic control or individual plasticity. We apply this
approach to geographic variation in behavioral ecology
(activity budgets, diet, and ranging), social organization (local
density, associations, and sociosexual variables), and putative
cultural behaviors observed among wild populations of orang-
utans in both Sumatra (P. abelii) and Borneo (P. pygmaeus)
that have been the subject of long-term field studies (Figure 1).

We found that orangutan populations are genetically highly
differentiated from each other. For both DNA markers used
in this study, only a very small fraction of the total variance
was explained by variation within populations (Table 1).
Thus, there is sufficient genetic variation among populations
and islands potentially to explain geographic variation in
behavior.
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Matrix permutation tests revealed several significant bivar-
iate correlations between differences in behavioral ecology
and genetic and environmental dissimilarities among 11 popu-
lations (Table 2). However, subsequent analyses aimed at
partitioning the total observed variance into uniquely genetic
and uniquely environmental components revealed that a
nonsignificant 4%of the total variance in orangutan behavioral
ecology was accounted for by genetic differences between
sites, whereas more than 25% could be attributed to environ-
mental differences (Table 2; Figure 2). Therefore, geographic
variation in orangutan behavioral ecology appears to be
much better explained by local adaptation through develop-
mental plasticity than through genetic canalization.
The documented geographic variation in social organi-

zation among seven orangutan populations also showed
several significant bivariate correlations with both genetic
and environmental dissimilarities (Table 2). Subsequent
estimates of the unique proportions of variance that were ex-
plained by either genetic or environmental dissimilarities
showed that genetic dissimilarities consistently accounted
for less than 7% of variation, regardless of which genetic
marker system was used, whereas environmental factors
again explained more than 25% (Table 2; Figure 2). Therefore,
geographic variation in orangutan social organization also
appears to result mainly from local adaptation through devel-
opmental plasticity rather than through genetic canalization.
Finally, geographic variation in behavior patterns previously

suggested to be cultural [10] showed nonsignificant bivariate
correlations with both genetic and environmental dissimilar-
ities among nine populations (Table 2). Partial Mantel tests
indicated that both genetic and environmental differences
each accounted for a minor and nonsignificant proportion of
the total variance observed (Table 2; Figure 2). These ten
putative cultural variants had been selected because they
were not subject to environmental influences and were among
the most conspicuous and frequent ones. However, the same
was found when all 24 putative cultural elements were con-
sidered: geographic variation was not significantly associated
with either explanatory variable, although environmental
dissimilarities approached significance (see Table S1 available
online). Therefore, neither genetic canalization nor individual
plasticity can account for geographic variation in putative
orangutan culture.
We repeated all analyses using Spearman rank correlation

matrix permutation tests for both genetic marker systems to
control for undue influences of potential outliers and potential
ceiling effects in our genetic dissimilarity measures. These
confirmed all previous conclusions (Table S2).

Discussion

Virtually all species show some geographic variation in their
phenotypes, from morphology and physiology to behavior
and life history [2–4]. This geographic variation is often thought
to reflect differential local adaptation through the action of
natural selection [11]. Perhaps because of the success of
experimental approaches, typically focusing on invertebrates
and fish [1], genetic variation accompanied by canalized
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Figure 1. Geographic Locations of Sites for

which Data on Orangutan Biology Were

Compiled

Thedifferent colors in themapcorrespond to esti-

mated distributions of the currently recognized

species and subspecies (Sumatra: dark red,

P. abelii; Borneo: beige, P. p. morio; orange,

P. p. pygmaeus; dark orange, P. p. wurmbii). In

addition, details are provided for each site on

the type of information that was available (BE,

behavioral ecology; SO, social organization;

PC, putative culture; ENV, information on local

dynamics in vegetation and climate from re-

motely sensed and spatially interpolated sour-

ces). Thenumbersof individuals forwhichgenetic

data were obtained for the particular marker

system are given in the columns ‘‘HVR-I’’ and

‘‘mtDNA genes.’’
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development is usually presented as the de facto null model
to explain geographic variation in a trait [7].

A locally adaptive phenotype might also be attained through
an additional pathway, namely developmental plasticity,
provided that this is not too costly [3]. This pathway is espe-
cially likely if extensive gene flow or insufficient time since
separation prevents local adaptations from becoming geneti-
cally fixed [12]. However, it is a plausible mechanism for
behavioral traits under all conditions, because behavioral
plasticity includes learning. Indeed, the ubiquity of learning,
especially in birds and mammals [4, 13], suggests that
Table 1. Genetic Variation among Orangutan Populations

HVR-I mtDNA Genes

Variance

Components

Percentage

of Variation

Variance

Components

Percentage

of Variation

Among

populations

10.30 95.84%* 32.21 98.93%*

Within

populations

0.65 4.16% 0.35 1.07%

Among islands 37.06 88.92%* 48.48 79.52%*

Among

populations/

within islands

3.90 9.36%* 7.81 12.81%*

Within

populations

0.72 1.72%* 4.67 7.67%*

Variance components and percentage of variation explained for two anal-

yses of molecular variance using HVR-I and mtDNA genetic data (see

text), respectively, when islands are not taken into account (top) and in

a data set partitioned according to islands (bottom). *p < 0.05.
individual plasticity is a common mech-
anism to adjust behaviorally to local
conditions.

An additional form of behavioral plas-
ticity is the acquisition of skills or infor-
mation through social learning—cultural
plasticity. Social learning ranges from
learning due to proximity or attraction
to the same stimuli or specific locations,
to learning by directly copying goals or
actions [14]. Social learning provides
the standard explanation for geographic
variation in human behavior, i.e. culture
[15], yet similar propositions for nonhuman animals [5] remain
controversial [6–8, 16].
Our analyses demonstrate that developmental plasticity

plays a major role in bringing about geographic variation in
orangutan behavior. If genetic differences had been respon-
sible, we should have found covariation between genetic and
behavioral variation, because populations and especially
islands (Sumatra versus Borneo) were genetically highly differ-
entiated. Nonetheless, genetic dissimilarities explained at
most 7%of the behavioral variation. In contrast, environmental
variation explained more than 25% of the variation in behav-
ioral ecology and social organization, supporting amajor influ-
ence of developmental plasticity.
Previous cultural interpretations of geographic variation in

ape behavior have been criticized for not having incorporated
the effect of environmental differences between sites [7]. Here,
however, we have demonstrated that the environmental
differences wemeasured are ecologically meaningful because
they explain variation in behavioral ecology and social organi-
zation. Yet, they could not explain the variation in the putative
cultural behaviors. Moreover, our reduced culture data set
contains only those putative cultural elements that are unlikely
to be linked to environmental factors. Because variation in
putative cultural elements was correlated with neither genetic
nor environmental variation, this particular category of geo-
graphic variation in behavior must have come about through
local innovations, spread and maintained by social learning
[10, 17].
Our findings are also supported by multiple other sources of

information. First, in our data set, the contrast in social organi-
zation was the only significant predictor of dissimilarities in



Table 2. Correlates of Geographic Variation in Orangutan Behavior

x z

HVR-I mtDNA Genes

rPearson 95% CI UVE pMantel rPearson 95% CI UVE pMantel

D Behavioral Ecology, 11 Populations, 55 Pairs

4ST 0.368 0.248–0.489 0.002 0.361 0.171–0.512 0.002

D ENV 0.593 0.406–0.714 <0.001 0.593 0.372–0.707 <0.001

4ST D ENV 0.199 0.116–0.310 3.95% 0.062 0.159 20.045–0.311 2.53% 0.161

D ENV 4ST 0.529 0.309–0.631 28.00% 0.002 0.523 0.234–0.645 27.36% 0.003

D Social Organization, 7 Populations, 21 Pairs

4ST 0.350 0.264–0.491 0.051 0.272 0.247–0.462 0.104

D ENV 0.544 0.369–0.650 0.022 0.544 0.369–0.668 0.022

4ST D ENV 0.263 0.082–0.480 6.90% 0.113 0.237 0.139–0.444 5.60% 0.173

D ENV 4ST 0.504 0.252–0.651 25.37% 0.022 0.532 0.330–0.656 28.30% 0.022

D Putative Culture (Conspicuous and Frequent Elements), 9 Populations, 36 Pairs

4ST 0.288 0.055–0.450 0.051 0.158 20.311–0.403 0.174

D ENV 0.318 0.076–0.561 0.073 0.318 0.024–0.525 0.074

4ST D ENV 0.223 0.042–0.344 4.98% 0.096 0.066 20.297–0.273 4.38% 0.376

D ENV 4ST 0.262 0.037–0.475 6.85% 0.117 0.287 0.001–0.469 8.22% 0.116

Matrix Pearson correlation coefficients (Mantel and partial Mantel tests) for two different genetic marker systems of behavioral dissimilarity matrices

with genetic (4ST; HVR-I and mtDNA genes) and environmental (D ENV) dissimilarities. The top two rows in each subsection of the table denote bivariate

correlations; the bottom two denote partial correlations (explanatory variables are indicated with x; variables that were partialled out are indicated

with z). The following abbreviations are used: CI, bootstrapped confidence interval; UVE, unique proportion of variance explained.
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conspicuous and frequent putative cultural behaviors (Table
S3), which is consistent with site-specific sociability being
a good predictor of the local repertoire size of putative cultural
variants [10]. Second, wild immature orangutans show selec-
tive visual attention to exactly those behaviors thought to be
most difficult to acquire independently [18], nearby popula-
tions exhibit differences in diet composition and call reper-
toires consistent with innovation and social learning [19], and
orangutans are proficient social learners in captivity [20].
Finally, similar work on other species, especially chimpanzees
[21], supports this conclusion. Thus, our study provides the
strongest support to date in the ever-growing chain of
evidence substantiating a cultural interpretation of geographic
variation in certain elements of nonhuman primate behavior
[10, 17].

Although historically it has been good scientific practice to
assume canalized development as the null model, we might
now have to question its adequacy for long-lived animals
that rely on extensive external inputs, including social ones,
during development. First, long-lived animals are likely to be
confronted with variation over time in environmental condi-
tions, and being usually large-bodied also tend to roam so
widely that they may encounter many different conditions.
Second, these animals may not have the demographic poten-
tial to respond rapidly to selection for local adaptation, forcing
them to rely more on plasticity to maintain locally adaptive
phenotypes [22]. The indications for extensive social learning
and cultural variation in other long-lived organisms such as
dolphins [23], whales [24], elephants [25], monkeys [26], and
some birds [27] support the idea that cultural plasticity is an
important pathway to local adaptation. The fact that culture
is found in great apes moreover gives us a much better basis
for developing a theoretical framework for cultural evolution,
within which to address the question of the elaboration of
this ability in humans [15].

Our results are entirely consistent with the cultural interpre-
tation, by demonstrating that the proportion of geographic
variation in putative cultural behaviors explained by genetic
or environmental differences among populations is very low,
but also highlight the importance of phenotypic plasticity, of
which culture is just one aspect, in long-lived animals more
generally.
Experimental Procedures

The Cultural Plasticity Model

In the cultural plasticity model, plasticity (individual or cultural) is implicated

if there is no correlation between genetic and behavioral variation across

populations. Note that this does not mean that the behavior itself has no

genetic basis, but merely that geographic variation in its manifestation is

primarily due to developmental plasticity. Because the expression of virtu-

ally all behavioral traits is caused by polygenic loci, identification of the

genes potentially responsible for the geographic variation in complex

behaviors is virtually impossible [28]. Therefore, the only feasible approach

in wild animal populations is to use neutral genetic markers, followed by

estimating the extent of genetic divergence as an index for the differences

between populations in the genes causally involved in the behaviors, as

done previously [29].

The use of this measure can be criticized if local selection subsequent

to divergence of two populations has favored differences among particular

coding genes, which therefore became disassociated from the overall

genetic dissimilarity across sites. However, selection on the polygenic

traits most likely responsible for behavioral variation will be attenuated

over multiple loci, so that each locus behaves as if it evolved nearly neutrally

[30]. Moreover, simulations showed that genetic differentiation measures

calculated from quantitative trait loci are almost identical to those derived

from neutral markers, regardless of the selective regime imposed on the

selective trait [31]. This fact justifies the use of overall genetic similarity

measures even in the potential presence of selection on behavior patterns.

Provided genetic and behavioral variation are uncorrelated, the plasticity

interpretation is confirmed if environmental variation explainsaconsiderable

proportion of the behavioral variation. In this case,we can further distinguish

between individual and cultural plasticity because only cultural plasticity

can produce geographic variation in behavior in the absence of environ-

mental differences. In sum, if we find for those behavior patterns previously

hypothesized to be cultural that their geographic variation is predicted by

neither genetic nor ecological differences, whereas that in other behaviors

is, we must accept a cultural interpretation for those behavior patterns.

Admittedly, the ability to distinguish between genetic and plasticity explana-

tions comes at a price: cultural variants with a strong environmental imprint,

and thus presumably themost adaptive onesmay go undetected.We there-

fore assume that showing thepresenceof culture unrelated toenvironmental

variation implies the presence of environmentally adaptive culture.



Figure 2. Uniquely Genetic and Environmental Contributions to Behavioral Variation among Orangutans

Residual plots of genetic and ecological dissimilarity as a function of dissimilarities in behavioral ecology, social organization, and putative culture for two

different genetic marker systems. Each dot represents a pairwise difference between sites. Blue dots denote comparisons within islands; red dots denote

comparisons between islands.
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Separating individual from cultural plasticity is possible in principle

through transplantation and social isolation experiments [32]. However,

these experiments are often impossible for logistic, ethical, and legal

reasons, especially for primates, forcing us to resort to a parsimony

approach by selecting themost consilient explanation for all relevant obser-

vations. Thus, in the case of great apes, the cultural interpretation of

geographic variation in some behavior patterns [15] is consistent with

captive experiments showing reliable social transmission of novel skills

[20] and observations suggesting selective visual attention for novel and

especially difficult behavioral skills [18]. However, none of these studies

directly addresses geographic variation as observed in the wild.

General Methodological Approach

Data on orangutan behavior were compiled from 11 study populations, with

well over 100,000 hours of total observational effort [9] over 40 years. We

included data on orangutan behavioral ecology and social organization

and also considered behavioral variants that had previously been inter-

preted as cultural [10, 33], in two forms: (1) a set of ten conspicuous and

frequent behaviors without obvious environmental correlates, thus elimi-

nating the role of possible observer bias, differential observation intensity,

or environmental differences among sites, and (2) the total published set

[33].We assessed the level of genetic dissimilarities between all populations

using two mitochondrial DNA marker systems. The first marker system,

‘‘HVR-I,’’ comprises 323 base pairs of the hypervariable region I (HVR-I) of

the mitochondrial DNA; the second marker system, ‘‘mtDNA genes,’’

comprises 1,355 base pairs of three concatenated parts of coding mtDNA

genes (16S rDNA, cytochrome b, and NADH-ubiquinone oxidoreductase

chain 3). Both marker systems differ in their mutation rates and therefore

provide better dissimilarity estimates at shorter or longer periods since

separation from a common ancestor, respectively. We quantified environ-

mental differences between sites by constructing a data matrix consisting

of ten variables to capture local dynamics in vegetation and climate. We
used matrix permutation correlation tests [34] to investigate potential asso-

ciations between the three behavioral dissimilarity matrices and genetic and

environmental dissimilarity matrices. To estimate the proportions of the

total variance in orangutan behavior attributable to either uniquely genetic

or ecological differences between sites, we calculated squared partial

matrix correlation coefficients, presented as unique variation explained.

Details are given in the Supplemental Experimental Procedures.

Statistical Analysis

All collated data on orangutan biology (behavior, genetics, and ecology) at

the various study sites were transformed into pairwise dissimilarity

matrices. For each of the three behavioral as well as the environmental

data sets, pairwise distances were expressed by Gower dissimilarity

matrices, calculated in the ‘‘ecodist’’ package [35] for R 2.10.1 [36]. The

Gower dissimilarity metric [37] was chosen for its ability to deal with mixed

variable types and its robustness against missing values [34, 38]. Genetic

dissimilarity between populations was parameterized by 4ST values for

mtDNA markers.

Matrix analyses were conducted using the Mantel permutation test

implemented in the ‘‘ecodist’’ package for R 2.10.1. Pearson correlation

coefficients and associated bootstrapped 95% confidence intervals

(nbootstraps = 1,000) were calculated and assessed for statistical significance

(npermutations = 10,000). To estimate the unique proportions of the total

variance in orangutan behavior attributable to either uniquely genetic or

ecological differences between sites, we calculated squared partial matrix

correlation coefficients, presented as unique variation explained indepen-

dently by each of the two main variables, as suggested previously [39].

This approach is valid only if collinearity between the two explanatory

variables is sufficiently low. This condition was met, because the correla-

tion between environmental dissimilarity and both genetic dissimilarity

measures was low (rPearson = 0.25 and 0.31 for HVR-I and mtDNA genes,

respectively).
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To account for the possibility that outliers may have exerted an undue

influence on our analyses, we additionally calculated Spearman rank corre-

lation coefficients and assessed these for statistical significance through

Mantel matrix permutations.
Supplemental Information

Supplemental Information includes five tables and Supplemental Experi-

mental Procedures and can be found with this article online at doi:10.

1016/j.cub.2011.09.017.
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