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Is the Mantel Correlogram powerful enough to be useful in ecological

analysis? A simulation study

DANIEL BORCARD' AND PIERRE LEGENDRE

Département de sciences biologiques, Université de Montréal, C.P. 6128, succursale Centre-ville, Montréal, Québec H3C 3J7 Canada

Abstract. The Mantel correlogram is an elegant way to compute a correlogram for
multivariate data. However, recent papers raised concerns about the power of the Mantel test
itself. Hence the question: Is the Mantel correlogram powerful enough to be useful? To explore
this issue, we compared the performances of the Mantel correlogram to those of other
methods, using numerical simulations based on random, normally distributed data. For a
single response variable, we compared it to the Moran and Geary correlograms. Type I error
rates of the three methods were correct. Power of the Mantel correlogram was nearly as high
as that of the univariate methods. For the multivariate case, the test of the multivariate
variogram developed in the context of multiscale ordination is in fact a Mantel test, so that the
power of the two methods is the same by definition. We devised an alternative permutation
test based on the variance, which yielded similar results. Overall, the power of the Mantel test
was high, the method successfully detecting spatial correlation at rates similar to the
permutation test of the variance statistic in multivariate variograms. We conclude that the

Mantel correlogram deserves its place in the ecologist’s toolbox.

Key words:
variogram; simulation study, spatial correlation.

INTRODUCTION

A traditional way of measuring spatial correlation in a
univariate quantitative variable is to resort either to
Moran’s I (Moran 1950) or Geary’s ¢ (Geary 1954)
spatial correlation statistics (Cliff and Ord 1981). These
structure functions, each in its manner, measure the
resemblance of pairs of values located within predefined
distance classes. Practically, one computes a matrix of
geographical distances among sampling sites and con-
verts these distances into a vector of classes d. The statistic
is then computed in turn within each distance class d.

Moran’s I formula bears a close resemblance to the
Pearson correlation coefficient:
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vy, and y; are the values of variable y at pairs of sites &
and 7, y is the mean of variable y over all sites and # is the
number of observations (sites). Both formulas show the
computation of the index value for a class of inter-site
distance d. W is the number of pairs of points in the
distance class considered. The weights wy,; have value 1
for pairs of sites belonging to distance class d, and 0
otherwise.

The expected value of Moran’s I for no spatial
correlation is E(/) = —1/(n — 1). For Geary’s ¢, the
expected value is 1.

For multivariate data, Sokal (1986) and Oden and
Sokal (1986) proposed to construct a spatial correlation
function on the basis of the Mantel (1967) test of matrix
correlation. The principle goes as follows: one computes
an appropriate resemblance matrix X among sites on the
basis of the ecological (or other) data, and for each
geographical distance class, this matrix is compared
using the standardized Mantel statistic r\y to a model
matrix Y where pairs of sites belonging to the same
distance class receive value 1 and the other pairs receive
value 0. The resemblance matrix subjected to testing can
be computed in any way appropriate to the application
field, e.g., using an ecological or genetic distance
function. It does not have to be computed using the
Euclidean distance formula. The standardized Mantel
statistic has the same formula as the Pearson correlation
coefficient, but computed between the values in distance
or similarity matrices X and Y (the lower [or upper]
triangular values only are used in the common case of a
symmetric matrix X; the diagonal values are trivial and
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not used in the calculation):

1 n =t X,'j*.i’ yij*y)
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where ¥ and y are the means of the values in each of the
lower-triangular distance matrices X and Y and s, and
s, are their standard deviations; d = [n(n — 1)/2] is the
number of distances in the lower triangular part of each
distance matrix. The expected value for no correlation
is 0.

Note that despite the mathematical relationship
between Pearson’s r and Mantel’s ry;, one should not
try to interpret the actual ry values as if they were
equivalent to correlation coefficients among variables.
Dutilleul et al. (2000) showed that for pairs of simulated
variables with normal distributions, the ry; statistic
computed between Euclidean distance matrices derived
from these variables was always much smaller than the
theoretical correlation between the simulated variables.
They explained this phenomenon by showing, theoret-
ically and empirically, that ry calculated between
matrices of squared Euclidean distances computed from
these variables is equal to the squared Pearson’s r
between the original variables; the demonstration holds
for the bivariate normal case only. When interpreting a
Mantel correlogram, one should not look for high
values of the statistic, but for the shape drawn by the
significant ry; values. The sign of the coefficient is
important, however. A positive (and significant) ry
indicates that for the given distance class, the multivar-
iate similarity among sites is higher than expected by
chance (i.e., the mean within-class similarity is higher
than the mean among-class similarity). The reverse is
true for negative ry; values: communities that are at the
corresponding distance are more different than expected
by chance. This interpretation is valid for ry statistics
computed between an ecological similarity matrix and
distance class model matrices with value 1 for pairs of
sites belonging to distance class @, and 0 otherwise. If the
calculation is based on an ecological distance matrix, the
sign of ry has to be changed for the correlogram to
display positive values in cases of positive spatial
correlation. This change of sign is done automatically
in function mantel.correlog() in R (R Development
Core Team 2010).

Parametric tests exist for Moran’s I and Geary’s ¢
coefficients. The Mantel statistic is generally tested by
permutations, although a normal approximation exists
for large data sets. Furthermore, the Appendix shows
that a permutational test of Mantel’s ry; on a matrix of
squared Euclidean distances computed from univariate
data and a distance model matrix is equivalent to a
permutational test of Geary’s ¢ computed on the same
data. It is also equivalent to a permutation test of the
univariate semi-variance statistic used in variograms.

A correlogram is a graph representing the spatial
correlation values against the distance classes. Correlo-
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grams can be drawn on the basis of any of the three
functions described above. Depending on the way that
the distance classes have been constructed, a correlo-
gram can be all-directional (when the variable of interest
is isotropic) or directional (when the geographic
distances have been calculated in a geographic direction
determined by the user). Interpretation of correlograms,
which can be tricky, is explained by Legendre and Fortin
(1989) and Legendre and Legendre (1998, 2012: Chapter
13).

Apart from the Mantel correlogram, techniques to
assess multivariate spatial structures by means of
structure functions are scarce. One interesting approach
is multiscale ordination (MSO; Wagner 2003, 2004).
MSO allows a spatial partitioning of community
variation among distance classes and a representation
and testing of the community spatial structure in the
form of a multivariate variogram, which is simply the
sum of the univariate variograms (Wagner 2003,
Legendre and Legendre 2012: Chapter 13).

The Mantel correlogram is an elegant idea, but recent
papers have raised concerns about the power of the
Mantel test of matrix correlation itself (Legendre et al.
2005, 2008, Legendre and Fortin 2010). Therefore, it is
appropriate to investigate whether the Mantel correlo-
gram has sufficient power to be useful to ecologists. This
is why we set out to compare it to the performance of
Moran’s I and Geary’s ¢ in the univariate context (the
use of a Mantel correlogram in the univariate context
was needed only for comparison purposes), and to the
multivariate variogram in the multivariate context, by
using simulated data. We chose to base our simulations
on random normal data compared using the Euclidean
distance to provide a comparison of the Mantel
correlogram with Moran and Geary correlograms in
situations where the latter two are expected to perform
at their best. The question addressed in this paper is
thus: how does the Mantel correlogram compare to the
other methods in terms of type I error rate and power in
the case of random normal data and Euclidean distance
matrices?

MATERIALS AND METHODS

Data simulations

The shape of our simulated data surface was a square
(100 X 100 pixel) grid populated by values drawn at
random from the normal distribution, which were
autocorrelated.

A necessary preliminary step to a power study is to
verify that the method under investigation has a correct
rate of type I error. To that effect, we populated our grid
with values drawn at random from a normal distribution
with mean p = 0 and standard deviation ¢ = 1. These
values were generated using function rnorm() of the R
language base package.

The random autocorrelated data were generated using
an R function derived from the Fortran program
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SimSSD (Legendre et al. 2002, 2004, 2005). SimSSD is
available as a Supplement to Legendre et al. (2005).

Data generation was done as follows: random normal
data were modified using conditional sequential Gauss-
ian simulations based on a variogram, which produced
data with isotropic spatial correlation. The spherical
variogram model was controlled by values of the range
parameter; values for this parameter were provided for
each simulation run. In all simulations, the nugget
variance was set to 0. The range parameter of the
variogram was set using the following values: 5, 10, 20,
50, and 100, i.e., spatial correlation was made to vary
among simulated data set from below the smallest range
theoretically perceptible by the sampling design up to
the point of encompassing the whole data set (100 units).
The data were actually generated on a simulation grid
larger than 100 X 100 pixel to avoid border effects.

The sampling design was a regular 10 X 10 grid
overlaid on the 100 X 100 grid; every 10th point was
sampled in both directions. This resolution allowed us to
sample data that were autocorrelated at scales starting
well below the sampling interval (i.e., spatial correlation
that should not be detected by analysis of the sample of
observations), and ranging up to the broadest possible
scale. Every simulation run consisted of 1000 indepen-
dent replicate data with the same characteristics.

The multivariate data for the Mantel correlograms
and multivariate variograms were made of two blocks of
five independent variables. The first five variables were
autocorrelated over the ranges defined above (except for
the type I error rate simulations) whereas the last five
variables were random normal variates with mean p =0
and standard deviation ¢ =2. We added this amount of
noise to the data to prevent the spatial correlation from
being too strong and thus detectable with 100% power
by all methods under investigation. All data sets,
including the random normal variates, were generated
prior to their use in the test runs, so that the exact same
data could be submitted to the different statistical
methods.

Computation and tests of spatial statistics

All correlograms were computed for the same distance
classes to make them comparable. The class interval,
measured in units on the simulated surface, was equal to
8.6 pixels.

The line of reasoning developed in the Appendix led
us to run two sets of Mantel tests for univariate data:
one set where a matrix of Euclidean distances computed
on the simulated data was used and another set where
the distances were squared.

A set of computations consisted of the following
steps: (1) sample the next vector available among the
1000 data sets. (2) compute the statistics (Moran’s 7,
Geary’s ¢, multivariate variogram and Mantel’s ryy) for
the seven first distance classes. (3) Test the coefficients.
Variances in the variograms and correlations ry in
Mantel correlograms and in multivariate variograms

MANTEL CORRELOGRAM POWER

1475

were tested by 999 permutations; the other two tests are
parametric. (4) Write the values of the statistics and the
associated probabilities to an output file. (5). Repeat
steps 1 to 4 for the 1000 data sets. (6) Compute
summary statistics: mean value of the statistics, rejection
rates of Hy at oo = 0.05 and their confidence intervals.
The Mantel correlogram was computed using the
function mantel.correlog() of the vegan R package
(available online).> Moran’s I and Geary’s ¢ correlo-
grams were obtained using a modified version of
function correlog() of the package pgirmess (available
online).> The multivariate variogram was obtained
through a modified version of function mso() (vegan
package): correlog() computes one-tailed tests in the
direction of positive spatial correlation; mso( ) computes
two-tailed tests. Therefore, we modified correlog() and
mso() to allow the tests to be one-tailed in the direction
of the sign of ry, i.e., the same test as the default in
mantel.correlog(). This may seem an overly liberal
decision, but we justify it by the fact that when
computing a correlogram one often has one-tailed
hypotheses of positive spatial correlation for the first
few distance classes. For these classes, a two-tailed test
would be too conservative. Conversely, many spatial
structures induce negative spatial correlation at larger
distances, which are detected by one-tailed tests in the
direction of the sign (which detect negative as well as
positive correlations). A side effect of this decision is
that in the simulations for type I error, one expects the
overall rejection rate to be twice the o significance level.
For instance, for oo =0.05, a test is expected to reject H,
in 5% of the runs in each tail, i.e., in 10% of the runs.
In its current version, the variogram test provided by
function mso() is in fact the exact same Mantel test as
performed by the function mantel.correlog() when the
latter is computed on squared Euclidean distances.
Consequently, we had no independent test to which we
could compare the performance of the Mantel correlo-
gram. This led us to devise another test based on a
different statistic. The Mantel test is based on the
correlation between a matrix of (ecological) distances
among sites and a binary matrix representing the
membership of sites to the distance class being tested.
In our new test, the variogram statistic (variance)
corresponding to each distance class is tested by random
permutations of the data rows followed by recomputa-
tion of the statistic. The test is one-tailed in the direction
of the sign of the difference between the statistic and the
total variance of the data, which is the mathematical
expectation of the variogram statistic. The test is run as
follows for a given distance class k: (1) compute the
variance of class k, s7, and the total variance, s2,, of the
data; (2) note the sign of the statistic obtained by
subtracting s2, from s?; (2) permute the rows of the data

tot
table; (3) recompute the variance of the permuted data

2 http://cran.r-project.org/package=vegan
3 http://CRAN.R-project.org/package=pgirmess
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expected rejection rate under Hy was thus 0.10. Horizontal lines in the graphs indicate (a, b, ¢) the expectation of the statistic or (d)

the type I error rate. Error bars show 95% confidence intervals.

in class &, 57 s (4) compare s ., to the distribution of
s7 obtained by permutation, in the tail given by the sign
noted at step 2.

Another issue is the correction for multiple testing
often applied to correlograms. Repeated testing on a
given data set increases the overall risk of type I error.
An overview of the most often-used correction proce-
dures can be found in Legendre and Legendre (2012:23).
In the simulations, we opted for no correction in order
to obtain and compare the raw probabilities in each
distance class.

REsuLTS
Type I error rate

Fig. 1 shows the results of the type I error simulations
for completely random, uncorrelated data in the
univariate case. Fig. 4a and b provide the same type of
results in the multivariate case; the Mantel correlogram
and variance-based test of the multivariate variogram
had very similar results. As can be seen, all methods
investigated are valid for all distance classes. A statistical
test is valid when the rejection rate of Hj is not larger
than the significance level o, for any value of o, when H,,
is true (Edgington 1995). Validity has been verified for
other o levels as well (not illustrated). Type I error rates
were always correct (i.e., close to the expected value of
10% in our simulations). All statistics showed values
close to their expectation at all distance classes. The
results are the same for data that were autocorrelated

with a range of five units, i.e., half the sampling interval
(not illustrated). This is normal, since the spatial
correlation range was below the detection limit of the
sampling design. In spite of the development presented
in the Appendix, there are slight differences between the
Mantel and Geary results, due to the fact that the tests
of Geary correlograms were parametric.

Power

The results reported below always refer to the Mantel
correlogram computed on squared Euclidean distances
because this version of the ryy statistic is mathematically
closer to Geary’s ¢, as demonstrated in Appendix A.
Small but nonsignificant differences between results
based on Euclidean distances and squared Euclidean
distances are due to the randomness of the permuta-
tions.

Univariate data—Overall and as expected, the power
of the three methods increased with the range of the
spatial correlation in the data. The power of the three
methods was approximately the same, with a slight
advantage to Moran and Geary (for which our
simulations used parametric tests, compared to permu-
tational tests for the Mantel correlogram).

Fig. 2a—d shows the results of the simulations for data
autocorrelated with a range of 10 units, i.e., correspond-
ing to the sampling interval. Interestingly, over the 1000
independent runs, the three coefficients detected spatial
correlation at the first distance class enough times to
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correlograms, and (d, h) rejection rates of Hy for normal data autocorrelated with a range of (a—d) 10 units and (d—g) 20 units on
the simulated surface and sampled every 10th unit in both directions. Rejection rates are for a significance level o =0.05, one-tailed
on the side of the sign. The expected rejection rate under Hy was thus 0.10. Horizontal lines in the graphs indicate (a, b, c, e, f, g) the
expectation of the statistic or (d, h) the expected rejection rate under Hy. Error bars show 95% confidence intervals; confidence

intervals are omitted when they are smaller than the symbols.

change the mean values of the statistics by a very slight
amount (Fig. 2a—c, where the scale of the ordinate was
chosen to show tiny differences), but the power of these
methods did not reach over the level of type I error (Fig.
2d). This means that even in the cases where these three
methods reacted to short-range spatial correlation with a
higher coefficient value, these values were not more often
significant than with uncorrelated data. This is due to the
fact that, in order to be consistently detected by the test,
spatial correlation has to be larger than the class interval.

Increasing the range of spatial correlation increased
the rates of detection at short range (first distance
classes) and at progressively larger ranges. With a spatial
correlation range of 20 units (Fig. 2e-h), the powers of
the Moran and Geary coefficients for the first distance
class were near 0.7. Mantel’s r was slightly less powerful,
at 0.6 (Fig. 2h). The power of the three coefficients
dropped to around or below 0.20 for the second distance
class, and remained slightly above the type I error level
for the other five classes.
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the simulated surface and sampled every tenth unit in both directions. For details, see caption of Fig. 2.

With a spatial correlation range of 50 units (Fig. 3a—
d), the power of the three statistics was high for the first
two distance classes (close to 0.90; Fig. 3d). Spatial
correlation was detected in approximately 40% of the
cases in the third distance class. The rate dropped to
around 0.3 in class 4, but increased slightly in the next
classes, which displayed negative spatial correlation.
When the spatial correlation range reached the extent of
the simulated surface (range = 100), the results (Fig. 3e—
h) resembled those obtained for a range of 50 units, but
with the smallest rates of rejection in distance class 5

(Fig. 3h), and negative spatial correlation detected in
around 40—55% of the cases in classes 6 and 7.

The conclusion from this part of the study is that the
three methods performed in a very comparable manner,
the Mantel correlogram being only slightly less powerful
for univariate normal data than its classical univariate
parametric counterparts.

Multivariate data—For reasons explained in Materi-
als and methods, the type I error and rejection rates of
the Mantel correlogram and of the multivariate vario-
gram in the form implemented in the version of mso()
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show 95% confidence intervals.

currently distributed with vegan on CRAN were
identical to within a few random permutations. This
equivalence holds because the test used in mso() is a
Mantel test based on Euclidean distances. A Mantel test
based on a matrix of non-Euclidean (e.g., Bray-Curtis)
ecological distances would of course not be equivalent to
a multivariate variogram computed on raw data.
Normality of distributions, however, plays no role in
this equivalence because the tests are permutational.
Furthermore, the power of our new test of the

multivariate variogram, based on variances, was undis-
tinguishable from that of the Mantel correlogram for all
spatial correlation ranges and distance classes. There-
fore, only the results for the Mantel correlogram are
presented.

Fig. 4c—j shows the distributions of ry; statistics and
rejection rates of the Mantel correlogram for four ranges
of spatial correlation. Overall, the properties observed
here are the same as the ones displayed by the univariate
Mantel correlogram. As soon as the range of spatial
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correlation exceeds the sampling distance, the power of
the Mantel correlogram increases, first in the first
distance class, and then in the following ones when the
range increases. Note the power to detect negative
spatial correlation, lying at about 40% in class 7 of
ranges 50 (Fig. 4h) and 100 (Fig. 4j).

The conclusion of this part of the study is that the
Mantel test in multivariate correlogram analysis had the
same type I error rate and power as the permutation test
of the new variogram statistic. Furthermore, it displayed
a power comparable to those of the univariate methods
for normally distributed data with similar ranges of
spatial correlation.

Conclusion

All results reported above are dependent on the
relationship between the range of the spatial patterns or
correlation and the grain, i.e., the width of the distance
classes chosen in the analyses. In this study based on a
square grid with intersite distances equal to 10, we chose
a class interval (8.6) that allowed the first class to
encompass sites that were related horizontally, vertically
and diagonally, since the interval [8.6, 17.4) contains the
diagonal distance /200 = 14.14 (remember, the points
are 10 units apart horizontally and vertically). The
second class contained the second neighbors, and so on.
It was important to choose a class interval that was both
compatible with the grain of the study and the aim of the
analysis. Since this condition was fulfilled, our study
showed that, despite the recent concerns about the
power of the Mantel test, which is at the core of the
Mantel correlogram, this method provided a reliable
assessment of the presence of spatial correlation in
univariate as well as multivariate data. The concerns
expressed in recent literature about the Mantel test are
related to situations where alternative methods are
available to address the scientific hypotheses more
appropriately and to test them with more power. When
looking for a multivariate assessment of spatial corre-
lation, however, few alternatives exist to compute
correlograms, which test hypotheses formulated in terms
of distances. Therefore, our simulation results can be
seen from two viewpoints: (1) comparisons between the
Mantel correlogram and other approaches using data
compatible with all methods showed that the Mantel
correlogram behaves well; (2) in its own field, in the
absence of equivalent methods, the Mantel correlogram
has an acceptable power. For univariate data, the test of
significance in the Mantel correlogram based on a
Euclidean distance matrix is equivalent to the test of
Geary’s ¢, which is also the method to test autocorre-
lation values in univariate variograms. For multivariate
data, the test used in Mantel correlograms has the exact
same power as the only alternative method, which is the
test of the multivariate variogram.

To be able to compare the methods with data
compatible with all of them, we ran our simulations
on random normal variables projected on sites that were
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compared using the Euclidean distance, this class
including distances that can be obtained by transform-
ing the data followed by calculation of the Euclidean
distance formula; see Legendre and Gallagher (2001)
and Legendre and Legendre (2012: Section 7.7).
However, the real value of the Mantel correlogram is
for studies where the response data are modeled by a
distance function that is not Euclidean. Among these are
most of the coefficients developed for the analysis of
species presence—absence data, for example, the coeffi-
cients of Jaccard and Serensen, as well as quantitative
distances for species abundance data, such as the
asymmetric Gower coefficient, the geodesic metric, the
Whittaker, Canberra, Clark, percentage difference, and
mean character difference modified for species data.
Distance coefficients intended for data other than
species are, for example, the symmetric Gower, Esta-
brook-Rogers, and the generalized Mahalanobis dis-
tance for groups of observations. See Legendre and
Legendre (2012) for descriptions of these coefficients,
which can all be used in Mantel correlogram studies and
in none of the other methods. Further simulations are
needed to assess the behavior of the Mantel correlogram
with nonnormal data and non-Euclidean distances.
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Appendix A

A demonstration of the equivalence between the permutational tests of the semi-variance,
Geary’s ¢, and Mantel’s z), statistics

We demonstrate here that in the form used in the Mantel correlogram, the original Mantel
statistic zy is closely related to Geary’s ¢ and should produce the exact same permutational
results when the Mantel correlogram is computed on squared distances. The demonstration
concerns zy instead of the widely used standardized coefficient 7y, but in practical terms this is
not important since both forms also produce the exact same permutational test results. The
comparison is made for the analysis of a single variable and the distance used to compute the
Mantel correlogram statistic is the Euclidean distance.

1. Consider a matrix D of Euclidean distances computed on the variable of interest. In the Mantel
correlogram, for a given class of geographical distance d, zy is the scalar product of matrix D and
a binary model matrix built as explained in the Introduction, after transforming (stringing out)
both matrices into vectors. Only the upper (or lower) triangular portion of each matrix need be
used in the calculation since a Euclidean distance matrix is symmetric. Therefore, zy is simply
the sum of the distances of D that belong to distance class d.

2. The semi-variance (Legendre and Legendre 1998 eq. 13.10) is the numerator of Geary’s c:
n—-1 n
1
V(d):_z zwhi()’h —J’i)2 (A1)
2w :
h=1 i=h+1

* Therefore, a permutational test of Geary’s c is equivalent to a permutational test of ¥ since the
two statistics differ only by the denominator of ¢, which is a constant.

* wy; 1s used to select the pairs belonging to class d; it plays a role equivalent to the binary model
matrix in the Mantel correlogram test.

* W is the numbers of pairs in distance class d; since this number is constant across the
permutations, one can eliminate it without changing the result of the test.

* The computation of Mantel’s zy differs from 7y by a single point: to obtain zy, one sums the

Euclidean distances between pairs of objects, whereas to obtain y one sums squared Euclidean
distances.

Conclusion: one can obtain a test equivalent to a permutational test of the semi-variance statistic
or Geary’s ¢ by squaring the distances in D before submitting them to the Mantel test.



