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Is the Mantel correlogram powerful enough to be useful in ecological
analysis? A simulation study
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Abstract. The Mantel correlogram is an elegant way to compute a correlogram for
multivariate data. However, recent papers raised concerns about the power of the Mantel test
itself. Hence the question: Is the Mantel correlogram powerful enough to be useful? To explore
this issue, we compared the performances of the Mantel correlogram to those of other
methods, using numerical simulations based on random, normally distributed data. For a
single response variable, we compared it to the Moran and Geary correlograms. Type I error
rates of the three methods were correct. Power of the Mantel correlogram was nearly as high
as that of the univariate methods. For the multivariate case, the test of the multivariate
variogram developed in the context of multiscale ordination is in fact a Mantel test, so that the
power of the two methods is the same by definition. We devised an alternative permutation
test based on the variance, which yielded similar results. Overall, the power of the Mantel test
was high, the method successfully detecting spatial correlation at rates similar to the
permutation test of the variance statistic in multivariate variograms. We conclude that the
Mantel correlogram deserves its place in the ecologist’s toolbox.
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INTRODUCTION

A traditional way of measuring spatial correlation in a

univariate quantitative variable is to resort either to

Moran’s I (Moran 1950) or Geary’s c (Geary 1954)

spatial correlation statistics (Cliff and Ord 1981). These

structure functions, each in its manner, measure the

resemblance of pairs of values located within predefined

distance classes. Practically, one computes a matrix of

geographical distances among sampling sites and con-

verts these distances into a vector of classes d. The statistic

is then computed in turn within each distance class d.

Moran’s I formula bears a close resemblance to the

Pearson correlation coefficient:
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whereas Geary’s c is akin to a squared distance measure
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yh and yi are the values of variable y at pairs of sites h

and i, ȳ is the mean of variable y over all sites and n is the

number of observations (sites). Both formulas show the

computation of the index value for a class of inter-site

distance d. W is the number of pairs of points in the

distance class considered. The weights whi have value 1

for pairs of sites belonging to distance class d, and 0

otherwise.

The expected value of Moran’s I for no spatial

correlation is E(I ) ¼ �1/(n � 1). For Geary’s c, the

expected value is 1.

For multivariate data, Sokal (1986) and Oden and

Sokal (1986) proposed to construct a spatial correlation

function on the basis of the Mantel (1967) test of matrix

correlation. The principle goes as follows: one computes

an appropriate resemblance matrix X among sites on the

basis of the ecological (or other) data, and for each

geographical distance class, this matrix is compared

using the standardized Mantel statistic rM to a model

matrix Y where pairs of sites belonging to the same

distance class receive value 1 and the other pairs receive

value 0. The resemblance matrix subjected to testing can

be computed in any way appropriate to the application

field, e.g., using an ecological or genetic distance

function. It does not have to be computed using the

Euclidean distance formula. The standardized Mantel

statistic has the same formula as the Pearson correlation

coefficient, but computed between the values in distance

or similarity matrices X and Y (the lower [or upper]

triangular values only are used in the common case of a

symmetric matrix X; the diagonal values are trivial and
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not used in the calculation):

rM ¼
1
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where x̄ and ȳ are the means of the values in each of the

lower-triangular distance matrices X and Y and sx and

sy are their standard deviations; d ¼ [n(n � 1)/2] is the

number of distances in the lower triangular part of each

distance matrix. The expected value for no correlation

is 0.

Note that despite the mathematical relationship

between Pearson’s r and Mantel’s rM, one should not

try to interpret the actual rM values as if they were

equivalent to correlation coefficients among variables.

Dutilleul et al. (2000) showed that for pairs of simulated

variables with normal distributions, the rM statistic

computed between Euclidean distance matrices derived

from these variables was always much smaller than the

theoretical correlation between the simulated variables.

They explained this phenomenon by showing, theoret-

ically and empirically, that rM calculated between

matrices of squared Euclidean distances computed from

these variables is equal to the squared Pearson’s r

between the original variables; the demonstration holds

for the bivariate normal case only. When interpreting a

Mantel correlogram, one should not look for high

values of the statistic, but for the shape drawn by the

significant rM values. The sign of the coefficient is

important, however. A positive (and significant) rM
indicates that for the given distance class, the multivar-

iate similarity among sites is higher than expected by

chance (i.e., the mean within-class similarity is higher

than the mean among-class similarity). The reverse is

true for negative rM values: communities that are at the

corresponding distance are more different than expected

by chance. This interpretation is valid for rM statistics

computed between an ecological similarity matrix and

distance class model matrices with value 1 for pairs of

sites belonging to distance class d, and 0 otherwise. If the

calculation is based on an ecological distance matrix, the

sign of rM has to be changed for the correlogram to

display positive values in cases of positive spatial

correlation. This change of sign is done automatically

in function mantel.correlog( ) in R (R Development

Core Team 2010).

Parametric tests exist for Moran’s I and Geary’s c

coefficients. The Mantel statistic is generally tested by

permutations, although a normal approximation exists

for large data sets. Furthermore, the Appendix shows

that a permutational test of Mantel’s rM on a matrix of

squared Euclidean distances computed from univariate

data and a distance model matrix is equivalent to a

permutational test of Geary’s c computed on the same

data. It is also equivalent to a permutation test of the

univariate semi-variance statistic used in variograms.

A correlogram is a graph representing the spatial

correlation values against the distance classes. Correlo-

grams can be drawn on the basis of any of the three

functions described above. Depending on the way that

the distance classes have been constructed, a correlo-

gram can be all-directional (when the variable of interest

is isotropic) or directional (when the geographic

distances have been calculated in a geographic direction

determined by the user). Interpretation of correlograms,

which can be tricky, is explained by Legendre and Fortin

(1989) and Legendre and Legendre (1998, 2012: Chapter

13).

Apart from the Mantel correlogram, techniques to

assess multivariate spatial structures by means of

structure functions are scarce. One interesting approach

is multiscale ordination (MSO; Wagner 2003, 2004).

MSO allows a spatial partitioning of community

variation among distance classes and a representation

and testing of the community spatial structure in the

form of a multivariate variogram, which is simply the

sum of the univariate variograms (Wagner 2003,

Legendre and Legendre 2012: Chapter 13).

The Mantel correlogram is an elegant idea, but recent

papers have raised concerns about the power of the

Mantel test of matrix correlation itself (Legendre et al.

2005, 2008, Legendre and Fortin 2010). Therefore, it is

appropriate to investigate whether the Mantel correlo-

gram has sufficient power to be useful to ecologists. This

is why we set out to compare it to the performance of

Moran’s I and Geary’s c in the univariate context (the

use of a Mantel correlogram in the univariate context

was needed only for comparison purposes), and to the

multivariate variogram in the multivariate context, by

using simulated data. We chose to base our simulations

on random normal data compared using the Euclidean

distance to provide a comparison of the Mantel

correlogram with Moran and Geary correlograms in

situations where the latter two are expected to perform

at their best. The question addressed in this paper is

thus: how does the Mantel correlogram compare to the

other methods in terms of type I error rate and power in

the case of random normal data and Euclidean distance

matrices?

MATERIALS AND METHODS

Data simulations

The shape of our simulated data surface was a square

(100 3 100 pixel) grid populated by values drawn at

random from the normal distribution, which were

autocorrelated.

A necessary preliminary step to a power study is to

verify that the method under investigation has a correct

rate of type I error. To that effect, we populated our grid

with values drawn at random from a normal distribution

with mean l ¼ 0 and standard deviation r ¼ 1. These

values were generated using function rnorm( ) of the R

language base package.

The random autocorrelated data were generated using

an R function derived from the Fortran program
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SimSSD (Legendre et al. 2002, 2004, 2005). SimSSD is

available as a Supplement to Legendre et al. (2005).

Data generation was done as follows: random normal

data were modified using conditional sequential Gauss-

ian simulations based on a variogram, which produced

data with isotropic spatial correlation. The spherical

variogram model was controlled by values of the range

parameter; values for this parameter were provided for

each simulation run. In all simulations, the nugget

variance was set to 0. The range parameter of the

variogram was set using the following values: 5, 10, 20,

50, and 100, i.e., spatial correlation was made to vary

among simulated data set from below the smallest range

theoretically perceptible by the sampling design up to

the point of encompassing the whole data set (100 units).

The data were actually generated on a simulation grid

larger than 100 3 100 pixel to avoid border effects.

The sampling design was a regular 10 3 10 grid

overlaid on the 100 3 100 grid; every 10th point was

sampled in both directions. This resolution allowed us to

sample data that were autocorrelated at scales starting

well below the sampling interval (i.e., spatial correlation

that should not be detected by analysis of the sample of

observations), and ranging up to the broadest possible

scale. Every simulation run consisted of 1000 indepen-

dent replicate data with the same characteristics.

The multivariate data for the Mantel correlograms

and multivariate variograms were made of two blocks of

five independent variables. The first five variables were

autocorrelated over the ranges defined above (except for

the type I error rate simulations) whereas the last five

variables were random normal variates with mean l¼ 0

and standard deviation r¼ 2. We added this amount of

noise to the data to prevent the spatial correlation from

being too strong and thus detectable with 100% power

by all methods under investigation. All data sets,

including the random normal variates, were generated

prior to their use in the test runs, so that the exact same

data could be submitted to the different statistical

methods.

Computation and tests of spatial statistics

All correlograms were computed for the same distance

classes to make them comparable. The class interval,

measured in units on the simulated surface, was equal to

8.6 pixels.

The line of reasoning developed in the Appendix led

us to run two sets of Mantel tests for univariate data:

one set where a matrix of Euclidean distances computed

on the simulated data was used and another set where

the distances were squared.

A set of computations consisted of the following

steps: (1) sample the next vector available among the

1000 data sets. (2) compute the statistics (Moran’s I,

Geary’s c, multivariate variogram and Mantel’s rM) for

the seven first distance classes. (3) Test the coefficients.

Variances in the variograms and correlations rM in

Mantel correlograms and in multivariate variograms

were tested by 999 permutations; the other two tests are

parametric. (4) Write the values of the statistics and the

associated probabilities to an output file. (5). Repeat

steps 1 to 4 for the 1000 data sets. (6) Compute
summary statistics: mean value of the statistics, rejection

rates of H0 at a ¼ 0.05 and their confidence intervals.

The Mantel correlogram was computed using the

function mantel.correlog( ) of the vegan R package

(available online).2 Moran’s I and Geary’s c correlo-

grams were obtained using a modified version of
function correlog( ) of the package pgirmess (available

online).3 The multivariate variogram was obtained

through a modified version of function mso( ) (vegan

package): correlog( ) computes one-tailed tests in the

direction of positive spatial correlation; mso( ) computes
two-tailed tests. Therefore, we modified correlog( ) and

mso( ) to allow the tests to be one-tailed in the direction

of the sign of rM, i.e., the same test as the default in

mantel.correlog( ). This may seem an overly liberal

decision, but we justify it by the fact that when
computing a correlogram one often has one-tailed

hypotheses of positive spatial correlation for the first

few distance classes. For these classes, a two-tailed test

would be too conservative. Conversely, many spatial

structures induce negative spatial correlation at larger
distances, which are detected by one-tailed tests in the

direction of the sign (which detect negative as well as

positive correlations). A side effect of this decision is

that in the simulations for type I error, one expects the

overall rejection rate to be twice the a significance level.
For instance, for a¼ 0.05, a test is expected to reject H0

in 5% of the runs in each tail, i.e., in 10% of the runs.

In its current version, the variogram test provided by

function mso( ) is in fact the exact same Mantel test as

performed by the function mantel.correlog( ) when the

latter is computed on squared Euclidean distances.
Consequently, we had no independent test to which we

could compare the performance of the Mantel correlo-

gram. This led us to devise another test based on a

different statistic. The Mantel test is based on the

correlation between a matrix of (ecological) distances
among sites and a binary matrix representing the

membership of sites to the distance class being tested.

In our new test, the variogram statistic (variance)

corresponding to each distance class is tested by random

permutations of the data rows followed by recomputa-
tion of the statistic. The test is one-tailed in the direction

of the sign of the difference between the statistic and the

total variance of the data, which is the mathematical

expectation of the variogram statistic. The test is run as

follows for a given distance class k: (1) compute the
variance of class k, s2

k , and the total variance, s2
tot, of the

data; (2) note the sign of the statistic obtained by

subtracting s2
tot from s2

k ; (2) permute the rows of the data

table; (3) recompute the variance of the permuted data

2 http://cran.r-project.org/package¼vegan
3 http://CRAN.R-project.org/package¼pgirmess
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in class k, s2
k:perm; (4) compare s2

k:perm to the distribution of

s2
k obtained by permutation, in the tail given by the sign
noted at step 2.

Another issue is the correction for multiple testing

often applied to correlograms. Repeated testing on a
given data set increases the overall risk of type I error.

An overview of the most often-used correction proce-
dures can be found in Legendre and Legendre (2012:23).

In the simulations, we opted for no correction in order
to obtain and compare the raw probabilities in each

distance class.

RESULTS

Type I error rate

Fig. 1 shows the results of the type I error simulations

for completely random, uncorrelated data in the
univariate case. Fig. 4a and b provide the same type of

results in the multivariate case; the Mantel correlogram
and variance-based test of the multivariate variogram

had very similar results. As can be seen, all methods
investigated are valid for all distance classes. A statistical

test is valid when the rejection rate of H0 is not larger

than the significance level a, for any value of a, when H0

is true (Edgington 1995). Validity has been verified for

other a levels as well (not illustrated). Type I error rates
were always correct (i.e., close to the expected value of

10% in our simulations). All statistics showed values
close to their expectation at all distance classes. The

results are the same for data that were autocorrelated

with a range of five units, i.e., half the sampling interval

(not illustrated). This is normal, since the spatial

correlation range was below the detection limit of the

sampling design. In spite of the development presented

in the Appendix, there are slight differences between the

Mantel and Geary results, due to the fact that the tests

of Geary correlograms were parametric.

Power

The results reported below always refer to the Mantel

correlogram computed on squared Euclidean distances

because this version of the rM statistic is mathematically

closer to Geary’s c, as demonstrated in Appendix A.

Small but nonsignificant differences between results

based on Euclidean distances and squared Euclidean

distances are due to the randomness of the permuta-

tions.

Univariate data.—Overall and as expected, the power

of the three methods increased with the range of the

spatial correlation in the data. The power of the three

methods was approximately the same, with a slight

advantage to Moran and Geary (for which our

simulations used parametric tests, compared to permu-

tational tests for the Mantel correlogram).

Fig. 2a–d shows the results of the simulations for data

autocorrelated with a range of 10 units, i.e., correspond-

ing to the sampling interval. Interestingly, over the 1000

independent runs, the three coefficients detected spatial

correlation at the first distance class enough times to

FIG. 1. (a, b, c) Values of the statistics and (d) type I error rates for seven distance classes of Moran (circles), Geary (squares)
and Mantel (diamonds) correlograms run on random normal data (1000 independent runs). The Mantel correlograms were
computed on squared distances. Type I error rates are for a significance level a ¼ 0.05, one-tailed on the side of the sign. The
expected rejection rate under H0 was thus 0.10. Horizontal lines in the graphs indicate (a, b, c) the expectation of the statistic or (d)
the type I error rate. Error bars show 95% confidence intervals.
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change the mean values of the statistics by a very slight

amount (Fig. 2a–c, where the scale of the ordinate was

chosen to show tiny differences), but the power of these

methods did not reach over the level of type I error (Fig.

2d). This means that even in the cases where these three

methods reacted to short-range spatial correlation with a

higher coefficient value, these values were not more often

significant than with uncorrelated data. This is due to the

fact that, in order to be consistently detected by the test,

spatial correlation has to be larger than the class interval.

Increasing the range of spatial correlation increased

the rates of detection at short range (first distance

classes) and at progressively larger ranges. With a spatial

correlation range of 20 units (Fig. 2e–h), the powers of

the Moran and Geary coefficients for the first distance

class were near 0.7. Mantel’s r was slightly less powerful,

at 0.6 (Fig. 2h). The power of the three coefficients

dropped to around or below 0.20 for the second distance

class, and remained slightly above the type I error level

for the other five classes.

FIG. 2. Values of the statistics of (a, e) Moran’s I (circles), (b, f ) Geary’s c (squares), and (c, g) Mantel’s r (diamonds)
correlograms, and (d, h) rejection rates of H0 for normal data autocorrelated with a range of (a–d) 10 units and (d–g) 20 units on
the simulated surface and sampled every 10th unit in both directions. Rejection rates are for a significance level a¼ 0.05, one-tailed
on the side of the sign. The expected rejection rate underH0 was thus 0.10. Horizontal lines in the graphs indicate (a, b, c, e, f, g) the
expectation of the statistic or (d, h) the expected rejection rate under H0. Error bars show 95% confidence intervals; confidence
intervals are omitted when they are smaller than the symbols.
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With a spatial correlation range of 50 units (Fig. 3a–

d), the power of the three statistics was high for the first

two distance classes (close to 0.90; Fig. 3d). Spatial

correlation was detected in approximately 40% of the

cases in the third distance class. The rate dropped to

around 0.3 in class 4, but increased slightly in the next

classes, which displayed negative spatial correlation.

When the spatial correlation range reached the extent of

the simulated surface (range¼ 100), the results (Fig. 3e–

h) resembled those obtained for a range of 50 units, but

with the smallest rates of rejection in distance class 5

(Fig. 3h), and negative spatial correlation detected in

around 40–55% of the cases in classes 6 and 7.

The conclusion from this part of the study is that the

three methods performed in a very comparable manner,

the Mantel correlogram being only slightly less powerful

for univariate normal data than its classical univariate

parametric counterparts.

Multivariate data.—For reasons explained in Materi-

als and methods, the type I error and rejection rates of

the Mantel correlogram and of the multivariate vario-

gram in the form implemented in the version of mso( )

FIG. 3. Values of the statistics of (a, e) Moran’s I (circles), (b, f ) Geary’s c (squares), and (c, g) Mantel’s r (diamonds)
correlograms, and (d, h) rejection rates of H0 for normal data autocorrelated with a range of (a–d) 50 units and (d–g) 100 units on
the simulated surface and sampled every tenth unit in both directions. For details, see caption of Fig. 2.
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currently distributed with vegan on CRAN were

identical to within a few random permutations. This

equivalence holds because the test used in mso( ) is a

Mantel test based on Euclidean distances. A Mantel test

based on a matrix of non-Euclidean (e.g., Bray-Curtis)

ecological distances would of course not be equivalent to

a multivariate variogram computed on raw data.

Normality of distributions, however, plays no role in

this equivalence because the tests are permutational.

Furthermore, the power of our new test of the

multivariate variogram, based on variances, was undis-

tinguishable from that of the Mantel correlogram for all

spatial correlation ranges and distance classes. There-

fore, only the results for the Mantel correlogram are

presented.

Fig. 4c–j shows the distributions of rM statistics and

rejection rates of the Mantel correlogram for four ranges

of spatial correlation. Overall, the properties observed

here are the same as the ones displayed by the univariate

Mantel correlogram. As soon as the range of spatial

FIG. 4. Values of the (a, c, e, g, i ) statistics, (b) type I error rates, and (d, f, h, j) power (which is the rejection rate of H0 when
spatial correlation is present) for seven distance classes of multivariate Mantel correlograms run on (a, b) random normal data and
(c–j) spatially correlated data in each of 1000 independent runs. For type I error and rejection rates, see caption of Fig. 2. Error bars
show 95% confidence intervals.
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correlation exceeds the sampling distance, the power of

the Mantel correlogram increases, first in the first

distance class, and then in the following ones when the

range increases. Note the power to detect negative

spatial correlation, lying at about 40% in class 7 of

ranges 50 (Fig. 4h) and 100 (Fig. 4j).

The conclusion of this part of the study is that the

Mantel test in multivariate correlogram analysis had the

same type I error rate and power as the permutation test

of the new variogram statistic. Furthermore, it displayed

a power comparable to those of the univariate methods

for normally distributed data with similar ranges of

spatial correlation.

Conclusion

All results reported above are dependent on the

relationship between the range of the spatial patterns or

correlation and the grain, i.e., the width of the distance

classes chosen in the analyses. In this study based on a

square grid with intersite distances equal to 10, we chose

a class interval (8.6) that allowed the first class to

encompass sites that were related horizontally, vertically

and diagonally, since the interval [8.6, 17.4) contains the

diagonal distance =200 ¼ 14.14 (remember, the points

are 10 units apart horizontally and vertically). The

second class contained the second neighbors, and so on.

It was important to choose a class interval that was both

compatible with the grain of the study and the aim of the

analysis. Since this condition was fulfilled, our study

showed that, despite the recent concerns about the

power of the Mantel test, which is at the core of the

Mantel correlogram, this method provided a reliable

assessment of the presence of spatial correlation in

univariate as well as multivariate data. The concerns

expressed in recent literature about the Mantel test are

related to situations where alternative methods are

available to address the scientific hypotheses more

appropriately and to test them with more power. When

looking for a multivariate assessment of spatial corre-

lation, however, few alternatives exist to compute

correlograms, which test hypotheses formulated in terms

of distances. Therefore, our simulation results can be

seen from two viewpoints: (1) comparisons between the

Mantel correlogram and other approaches using data

compatible with all methods showed that the Mantel

correlogram behaves well; (2) in its own field, in the

absence of equivalent methods, the Mantel correlogram

has an acceptable power. For univariate data, the test of

significance in the Mantel correlogram based on a

Euclidean distance matrix is equivalent to the test of

Geary’s c, which is also the method to test autocorre-

lation values in univariate variograms. For multivariate

data, the test used in Mantel correlograms has the exact

same power as the only alternative method, which is the

test of the multivariate variogram.

To be able to compare the methods with data

compatible with all of them, we ran our simulations

on random normal variables projected on sites that were

compared using the Euclidean distance, this class

including distances that can be obtained by transform-

ing the data followed by calculation of the Euclidean

distance formula; see Legendre and Gallagher (2001)

and Legendre and Legendre (2012: Section 7.7).

However, the real value of the Mantel correlogram is

for studies where the response data are modeled by a

distance function that is not Euclidean. Among these are

most of the coefficients developed for the analysis of

species presence–absence data, for example, the coeffi-

cients of Jaccard and Sørensen, as well as quantitative

distances for species abundance data, such as the

asymmetric Gower coefficient, the geodesic metric, the

Whittaker, Canberra, Clark, percentage difference, and

mean character difference modified for species data.

Distance coefficients intended for data other than

species are, for example, the symmetric Gower, Esta-

brook-Rogers, and the generalized Mahalanobis dis-

tance for groups of observations. See Legendre and

Legendre (2012) for descriptions of these coefficients,

which can all be used in Mantel correlogram studies and

in none of the other methods. Further simulations are

needed to assess the behavior of the Mantel correlogram

with nonnormal data and non-Euclidean distances.

ACKNOWLEDGMENTS

This paper is dedicated to the memory of Robert R. Sokal
who passed away on 9 April 2012. Professor Sokal was at the
origin of the Mantel correlogram discussed in this paper.

We are grateful to Alena Motorina for help at the beginning
of the simulation process, and to two anonymous reviewers for
very insightful comments on the manuscript. This work was
supported by Natural Sciences and Engineering Research
Council of Canada (NSERC) grant no. 7738 to P. Legendre.

LITERATURE CITED

Cliff, A. D., and J. K. Ord. 1981. Spatial processes. Pion,
London, UK.

Dutilleul, P., J. D. Stockwell, D. Frigon, and P. Legendre. 2000.
The Mantel test versus Pearson’s correlation analysis:
assessment of the differences for biological and environmen-
tal studies. Journal of Agricultural, Biological and Environ-
mental Statistics 5:131–150.

Edgington, E. S. 1995. Randomization tests. Third edition.
Marcel Dekker, New York, New York, USA.

Geary, R. C. 1954. The contiguity ratio and statistical mapping.
Incorporated Statistician 5:115–145.

Legendre, P., D. Borcard, and P. R. Peres-Neto. 2005.
Analyzing beta diversity: partitioning the spatial variation
of community composition data. Ecological Monographs
75:435–450.

Legendre, P., D. Borcard, and P. R. Peres-Neto. 2008.
Analyzing or explaining beta diversity: comment. Ecology
89:3238–3244.

Legendre, P., M. R. T. Dale, M.-J. Fortin, P. Casgrain, and J.
Gurevitch. 2004. Effects of spatial structures on the results of
field experiments. Ecology 85:3202–3214.

Legendre, P., M. R. T. Dale, M.-J. Fortin, J. Gurevitch, M.
Hohn, and D. Myers. 2002. The consequences of spatial
structure for the design and analysis of ecological field
surveys. Ecography 25:601–615.

Legendre, P., and M.-J. Fortin. 1989. Spatial pattern and
ecological analysis. Vegetatio 80:107–138.

Legendre, P., and M.-J. Fortin. 2010. Comparison of the
Mantel test and alternative approaches for detecting complex

DANIEL BORCARD AND PIERRE LEGENDRE1480 Ecology, Vol. 93, No. 6



multivariate relationships in the spatial analysis of genetic
data. Molecular Ecology Resources 10:831–844.

Legendre, P., and E. D. Gallagher. 2001. Ecologically
meaningful transformations for ordination of species data.
Oecologia 129:271–280.

Legendre, P., and L. Legendre. 1998. Numerical ecology.
Second English edition. Elsevier Science BV, Amsterdam,
The Netherlands.

Legendre, P., and L. Legendre. 2012. Numerical ecology. Third
English edition. Elsevier Science BV, Amsterdam, The
Netherlands.

Mantel, N. 1967. The detection of disease clustering and a
generalized regression approach. Cancer Research 27:209–
220.

Moran, P. A. P. 1950. Notes on continuous stochastic
phenomena. Biometrika 37:17–23.

Oden, N. L., and R. R. Sokal. 1986. Directional autocorrela-
tion: an extension of spatial correlograms to two dimensions.
Systematic Zoology 35:608–617.

RDevelopment Core Team. 2010.R version 2.11.1. R Project for
Statistical Computing, Vienna, Austria. www.r-project.org

Sokal, R. R. 1986. Spatial data analysis and historical
processes. Pages 29–43 in E. Diday, Y. Escoufier, L. Lebart,
J. Pagès, Y. Schektman, and R. Tomassone, editors. Data
analysis and informatics, IV. North-Holland, Amsterdam,
The Netherlands.

Wagner, H. H. 2003. Spatial covariance in plant communities:
integrating ordination, variogram modeling, and variance
testing. Ecology 84:1045–1057.

Wagner, H. H. 2004. Direct multi-scale ordination with
canonical correspondence analysis. Ecology 85:342–351.

SUPPLEMENTAL MATERIAL

Appendix

A demonstration of the equivalence between the permutational tests of the semi-variance, Geary’s c, and Mantel’s zM statistics
(Ecological Archives E093-129-A1).
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Appendix A 
A demonstration of the equivalence between the permutational tests of the semi-variance, 

Geary’s c, and Mantel’s zM statistics 
 

 We demonstrate here that in the form used in the Mantel correlogram, the original Mantel 
statistic zM is closely related to Geary’s c and should produce the exact same permutational 
results when the Mantel correlogram is computed on squared distances. The demonstration 
concerns zM instead of the widely used standardized coefficient rM, but in practical terms this is 
not important since both forms also produce the exact same permutational test results. The 
comparison is made for the analysis of a single variable and the distance used to compute the 
Mantel correlogram statistic is the Euclidean distance. 

1. Consider a matrix D of Euclidean distances computed on the variable of interest. In the Mantel 
correlogram, for a given class of geographical distance d, zM is the scalar product of matrix D and 
a binary model matrix built as explained in the Introduction, after transforming (stringing out) 
both matrices into vectors. Only the upper (or lower) triangular portion of each matrix need be 
used in the calculation since a Euclidean distance matrix is symmetric. Therefore, zM is simply 
the sum of the distances of D that belong to distance class d. 

2. The semi-variance (Legendre and Legendre 1998 eq. 13.10) is the numerator of Geary’s c: 

   

� 

γ(d) = 1
2W

whi
i=h+1

n

∑
h=1

n−1

∑ (yh − yi )
2   (A1) 

• Therefore, a permutational test of Geary’s c is equivalent to a permutational test of γ since the 
two statistics differ only by the denominator of c, which is a constant. 

• wih is used to select the pairs belonging to class d; it plays a role equivalent to the binary model 
matrix in the Mantel correlogram test. 

• W is the numbers of pairs in distance class d; since this number is constant across the 
permutations, one can eliminate it without changing the result of the test. 

• The computation of Mantel’s zM differs from γ by a single point: to obtain zM, one sums the 
Euclidean distances between pairs of objects, whereas to obtain γ one sums squared Euclidean 
distances. 

Conclusion: one can obtain a test equivalent to a permutational test of the semi-variance statistic 
or Geary’s c by squaring the distances in D before submitting them to the Mantel test. 

 


