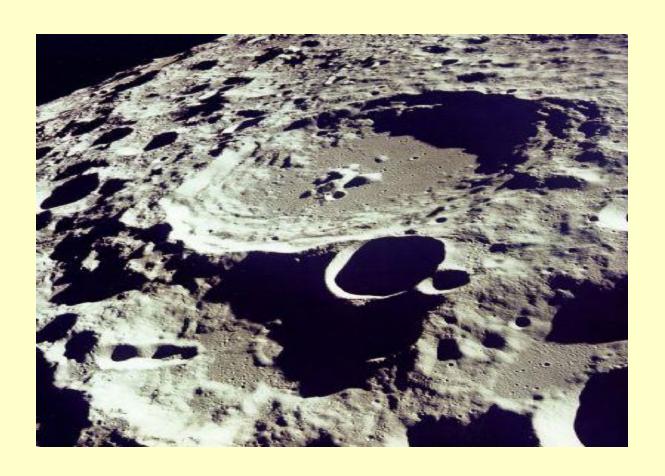

NMDS – Application & Examples

Objectives:

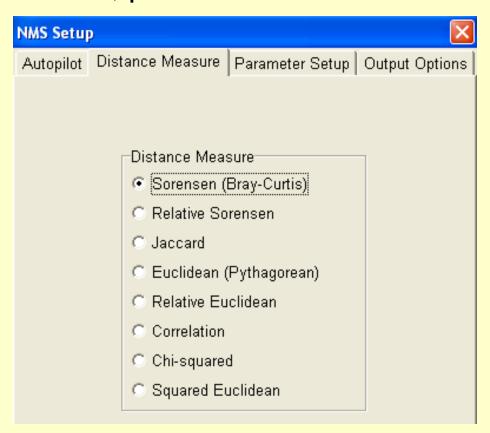
- Showcase NMDS analysis – in PC-ORD and the literature


NMS – Suggested Procedure (McCune and Grace 2002)

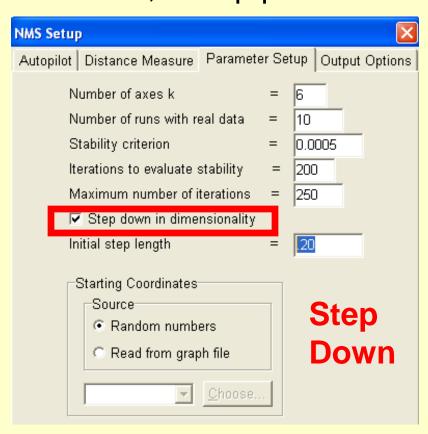
These "minimum" suggested procedures for determining appropriate largest dimensionality, assigning statistical significance with randomizations, and avoiding local minima.

➤ Recommendation: Request a 6-dimensional solution, stepping down to a 1-dimensional solution, with instability criterion of 0.0005, 200-500 iterations, 20-50 runs with real data, and 20-50 runs of randomized data (NOTE: use more runs for randomization significance tests)

(McCune and Grace 2002)

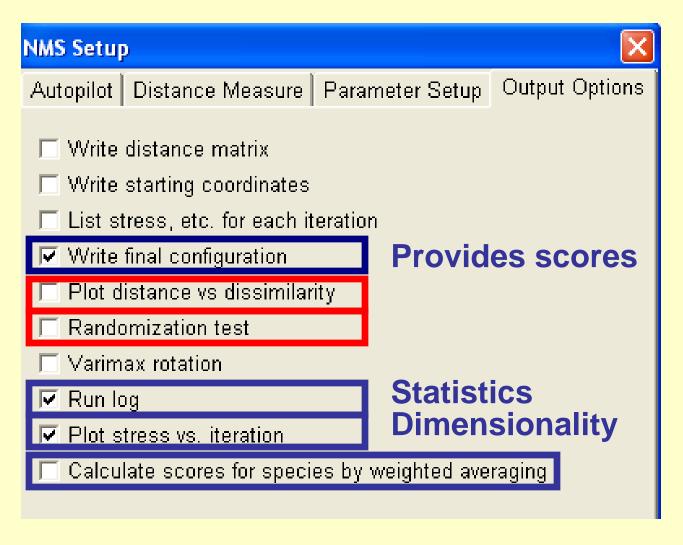

Iterations: 250 – 500

Robots per mission

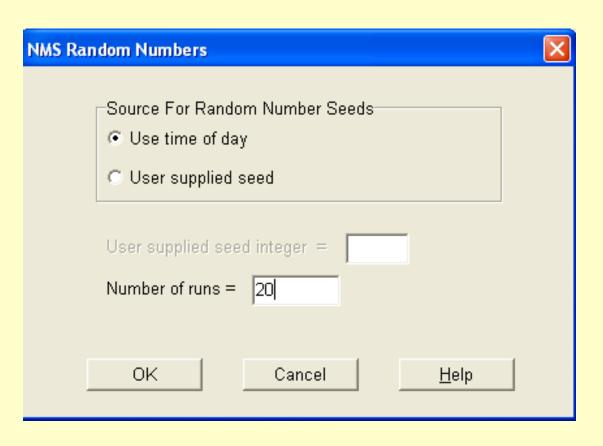

Runs: 20 – 50

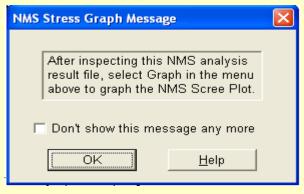
Missions

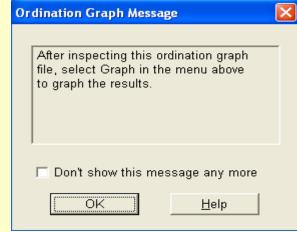
> First, pick distance measure


Second, set up parameters

- Relative Sorensen
- Relative Euclidean


- Dimensions (max = 6)
- Stepping Down


> Third, pick the output options



- Write final configuration
- Run Log
- Plot Stress
 vs.. Iteration
- Plot distance
 vs. dissimilarity
- Randomization
 Statistical Test
- Species Scores (for plotting)

- 1. Preliminary runs: Stress Test determines dimensionality
- Use "time of day" random seed > "Graph" messages

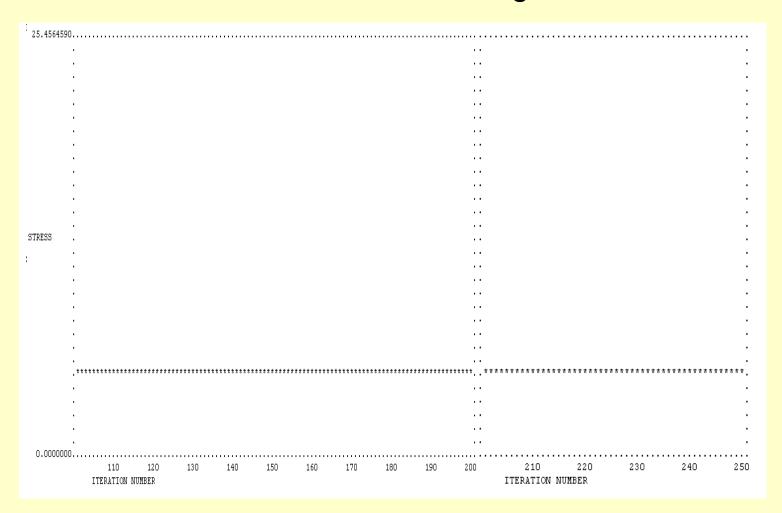
Examine Results.txt file: Settings / Options

```
NMS Results
Ordination of stands in species space. 20 stands
                                                                 25 species
        The following options were selected:
ANALYSIS OPTIONS
        1. REL.SOREN. = Distance measure
                    6 = Number of axes (max. = 6)
        2.
                  250 = Maximum number of iterations
        3.
               RANDOM = Starting coordinates (random or from file)
        4.
        5.
                    1 = Reduction in dimensionality at each cycle
        6.
                 0.20 = Step length (rate of movement toward minimum stress)
        7.
             USE TIME = Random number seeds (use time vs. user-supplied)
                  10 = Number of runs with real data
        8.
        9.
                  20 = Number of runs with randomized data
       10.
                  NO = Autopilot
       11.
             0.000500 = Stability criterion, standard deviations in stress
                        over last 200 iterations.
OUTPUT OPTIONS
            NO = Write distance matrix?
       13.
       14. NO = Write starting coordinates?
       15.
                 NO = List stress, etc. for each iteration?
                 YES = Plot stress vs. iteration?
       18.
       17.
                 YES = Plot distance vs. dissimilarity?
       16.
                  YES = Write final configuration?
       19.
            UNROTATED = Write varimax-rotated or unrotated scores for graph?
       20.
                 YES = Write run log?
                  YES = Write weighted-average scores for species ?
       21.
```

Examine Results.txt file: Results for each run / dimension

```
*********** 6-dimensional solution **********
                                                                 Stress
      4.13784 = final stress for 6-dimensional solution
      0.00181 = final instability
           250 = number of iterations
                                                                Scores
Final configuration (ordination scores) for this run
   stands
                      Axis
Number Name
                        1
                                              3
                                                                                6
                  -0.4593
                             -0.4917
                                        -0.1972
                                                    -0.4748
                                                                0.6636
                                                                          -0.9756
    1 Cst1
                              0.3019
    2 Cst10
                   0.3223
                                        0.3186
                                                    -0.0754
                                                                0.2269
                                                                           0.6306
    3 Cst11
                  -0.2877
                              0.5412
                                        -0.0581
                                                    0.1729
                                                                0.0283
                                                                           0.5286
    4 Cst13
                   0.3234
                              0.5688
                                        0.6306
                                                    0.3683
                                                                0.1842
                                                                           0.0530
    5 Cst14
                                        -0.0626
                  -0.1773
                             -0.2887
                                                    0.2415
                                                                0.9185
                                                                          0.0570
    6 Cst15
                   0.0429
                              0.1813
                                       -0.6542
                                                    0.3843
                                                               -0.1038
                                                                          -0.0570
    7 Cst2
                  -0.1684
                             -0.4507
                                        -0.0887
                                                   -0.1193
                                                                0.4672
                                                                          -0.5257
    8 Cst5
                  -0.4274
                              0.6304
                                        -0.3393
                                                    -0.1422
                                                                0.1002
                                                                         0.0534
                                                                0.1324
    9 Cst8
                  -0.0036
                             -0.3303
                                        -0.1930
                                                    0.3138
                                                                          -0.1652
   10 Cst9
                   0.5905
                              0.8432
                                        0.6634
                                                    0.2364
                                                                0.4528
                                                                          -0.4135
                                        -0.5173
   11 CscC
                   0.6282
                              0.2145
                                                   -0.6371
                                                                0.1019
                                                                          -0.2152
   12 CscD
                  -0.3524
                             -0.5933
                                        -0.2223
                                                    0.0561
                                                                0.0939
                                                                         0.1105
   13 CscE
                   0.6514
                             -0.2372
                                         -0.0369
                                                   0.6826
                                                               -0.3325
                                                                          -0.2327
   14 CscG
                  -0.3171
                              0.4538
                                        0.5825
                                                   -0.1828
                                                               -0.7567
                                                                          -0.5066
   15 CscL
                                                    -0.0092
                  -0.4203
                             -0.5140
                                        0.1037
                                                               -0.3429
                                                                          0.7900
   16 CscO
                             -0.3004
                                        -0.0761
                                                    0.1069
                  -0.5565
                                                               -0.4352
                                                                           0.0866
   17 CscP
                   0.6217
                             -0.5315
                                         0.0009
                                                    0.2558
                                                               -0.8028
                                                                          -0.0575
   18 CscO
                  -0.1452
                             0.2822
                                                              0.0039
                                                                           0.2332
                                         0.2895
                                                    -0.7168
   19 CscS
                   0.3446
                             -0.0388
                                        0.3447
                                                    -0.7647
                                                               -0.1482
                                                                           0.0244
                  -0.2097
                             -0.2407
                                         -0.4884
                                                    0.3035
                                                               -0.4517
                                                                           0.5819
   20 CscT
```

Examine Results.txt file: Shepard Diagram


```
1888187
(6 - D)
                                             118582
                                        1176 17178
                                17372
                             16661718 1170
                             162116163
                             1151 111527 149
                         13013131313837
                         12127112928
                          1211912017118
                  10491051011111906
                    8898880
                  70978675777
                65 667 6666
                 56085956 448
          33406
           33334 32
                                  Final
   2625
  2124 22
     1920
                                  Stress:
 17 1518
 121 10
                                  4.137
```

```
176175
                                      177
                            170 171 167 16616968
                        153 161631156 159
                             13914342
              136 135
                          13311374 138
       11116111121 114 1198 120
          10310105 1011001118 98
                898786182 888
          772 696875437786
        558 5950 485579 51 6055356
         338 3940 36
                                      Final
  17 15
            18 16
+ 13 14
                                     Stress:
                                      23.138
         4
```

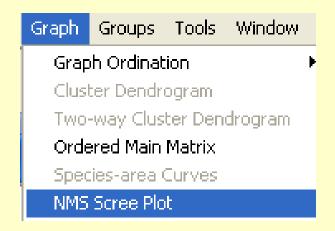
Distances in 6-D space

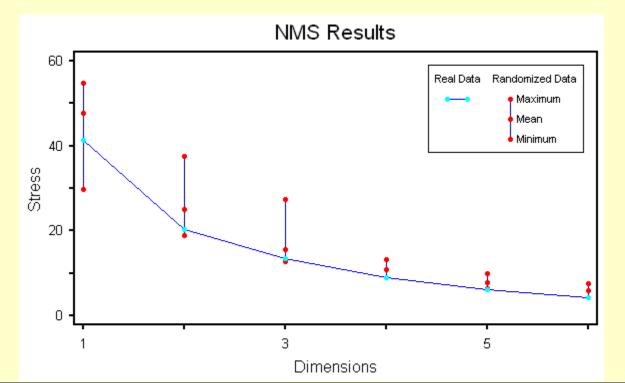
Distances in 2-D space

Examine Results.txt file: Plotting Stress vs. Iteration

Note: This process is repeated for each run

Examine Results.txt file: Stress


```
STRESS IN RELATION TO DIMENSIONALITY (Number of Axes)
       Stress in real data
                        Stress in randomized data
           10 run(s)
                         Monte Carlo test, 20 runs
Axes Minimum Mean Maximum Minimum Mean Maximum
    38.376 46.541 54.222 41.561 48.626 54.483 0.0476
    20.366
           22.469
                  25.766 21.752 24.574 28.997 0.0476
   8.919 8.954 9.268 8.579 10.807 12.085 0.0952
   6.078 6.288 6.587 6.662 7.863 9.987 0.0476
     4.138 4.217 4.499 4.635 5.716 7.708 0.0476
p = proportion of randomized runs with stress < or = observed stress
i.e., p = (1 + no. permutations <= observed)/(1 + no. permutations)
```


Number of Axes – p values: 3 (stress = 13.418)

Goal: Select the Best Solution:
Plot stress vs. dimensions

How: After running NMS in PC-ORD

Use: Graph | NMS Scree Plot

NOTE:

If the stress increases with additional dimensions, the model is over-fitted

Information Theory - Suggested Procedure

Trade-off between model fit and complexity (e.g., Akaike information criterion)

Measure of relative goodness of fit of a statistical model

Quantifies tradeoff between accuracy / complexity of model

$$AIC = 2k - 2\ln(L)$$

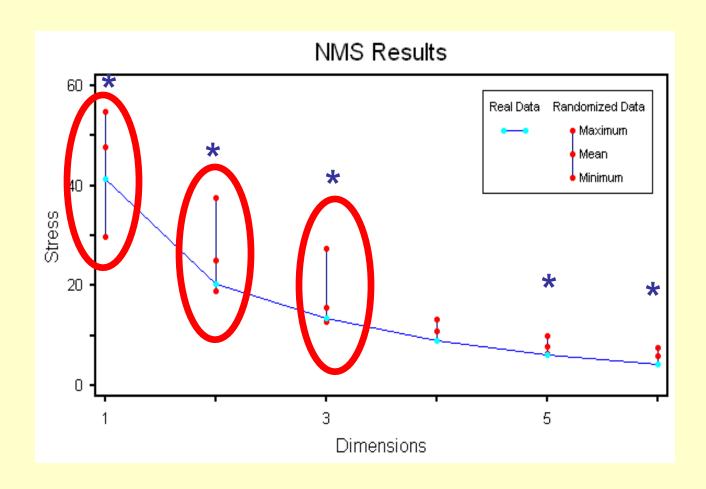
- Where:

k is the number of parameters in the statistical model *L* is the likelihood function for the estimated model

NMDS model - Suggested Procedure

Trade-off between model fit and complexity

Measure of relative goodness of fit of the NMDS


Quantifies tradeoff between accuracy / complexity of NMDS

Where:

Axes = number of axes (dimensions) in model K is the constant "stress" penalty for each axis

- PC-ORD uses the following criteria (for reference):
- Comparing final (minimum) stress values among the best solutions, picks one best solution for each dimensionality.
- Additional dimensions considered useful if they reduce final stress > 5 (on a scale of 0-100). PC-ORD selects the highest dimensionality that meets this criterion.
- At that dimensionality, final (minimum) stress must be lower than that for 95% of randomized runs (i.e. p ≤ 0.05).
- If this criterion is not met, PC-ORD does not accept that solution and chooses a lower-dimensional solution, provided that it passes the specific randomization test.

- Criteria for selecting number of dimensions:
- marginal change in stress
- p values

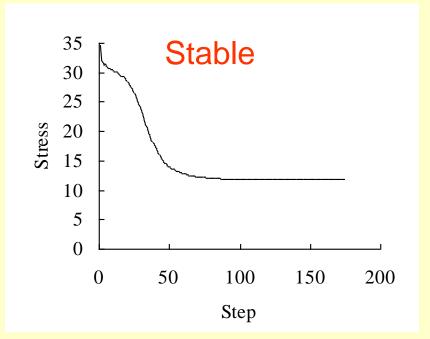
NOTE:

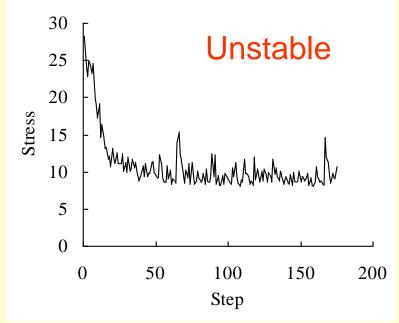
If stress does not increase, with added Ds, computer considers marginal decline with added Ds

Next, consider the p values

- Goal: Check for a better-than-random solution using the results of the Randomization test (p values)
- Limitations: Helpful but not fool-proof

 The most common problems are:
 - Strong outliers, single super-abundant species, small data sets (e.g.,< 10 SUs), many zeros
- ➤ Note: The first axis with randomized community data is often as strong or stronger than the real data.

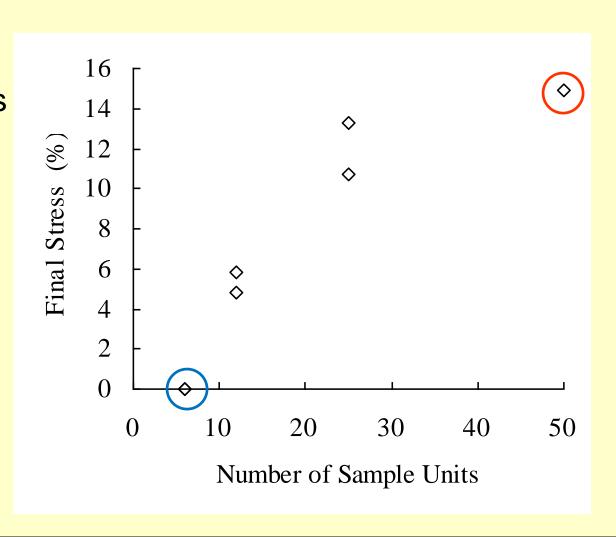

The randomization creates rows with unequal abundances. Thus the 1-D NMS solution from the shuffled data tends to capture variation in row totals. Interpret 1-D solutions carefully


- Goal: Select number of dimensions beyond which additional dimensions provide only small stress reductions
- Suggestion: Follow PC-ORD's recommendationbut check for safeguards
- > Note:
- "No firm fixed criterion for selecting an appropriate number of dimensions" (Kruskal and Wish 1978)
- Axis scores depend on the number of axes.
- Remember: First dimension on best multi-Dimensional (2-D, 3-D, ...) result will be different

Trade-Offs:

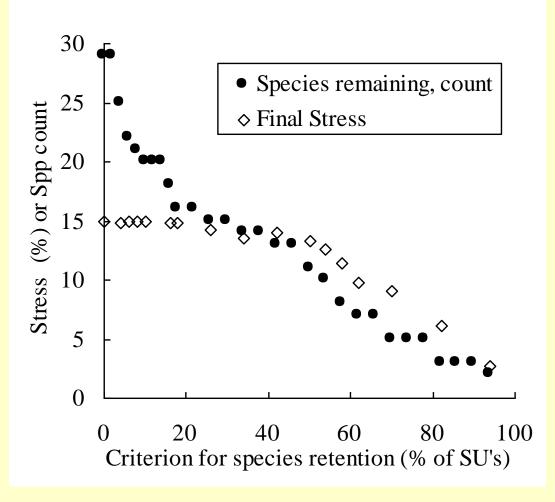
- Final stress decreases and the proportion of the variance represented increases with more axes
- Complexity of explanation increases with more axes
- Pick as few (significant) dimensions as possible
 - based on stress reductions
- Beware of unstable results (stress wiggles with iterations)
- Consult the instability of the final answer
- NO matter what:
 Do not trust results with large stress values (> 20)

- Check the following plot of stress vs. iteration for stability for the NMDS chosen solution
 - Look for smooth curves
 - Strive for instability < 10⁻³ (< 0.001)



Use Data Exploration to explore stress of NMS analysis

Assessing the dependence of stress on sample size, by subsampling rows of matrix of 50 samples by 29 species


Fewer samples lead to lower stress

Use Data Exploration to explore stress of NMS analysis

Assessing the dependence of NMDS stress on progressive removal of rare species from the data set

Fewer species lead to lower stress

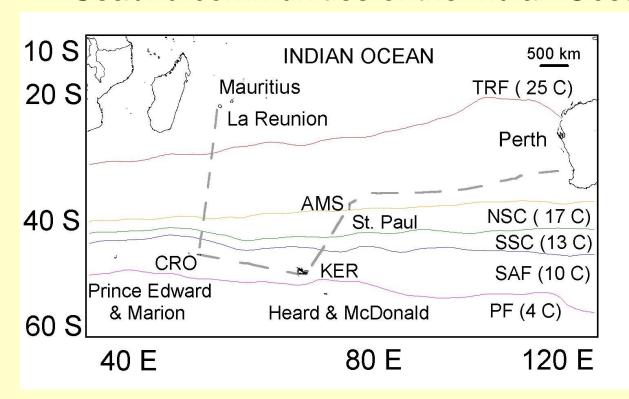
NMS – What to Report

- Samples / Species Considered
- Data Transformations / Relativizations
- Distance measure used
- Did you use a random starting point?
- Number of runs with real / random data
- Number of dimensions considered
- How did you select the dimensions
- Final stress / instability of best solution
- Monte Carlo tests results (runs, p values)
- Proportion of variance explained by each axis (r²)
- Plot Overlays (env. data / species)
- Correlations of env. data / species with axes (Tau)

NMS – References

PC-ORD uses the following algorithms:

Mather, P. M. 1976. Computational methods of multivariate analysis in physical geography. J. Wiley & Sons, London. 532 pp.


Kruskal, J. B. 1964. Multidimensional scaling by optimizing goodness of fit to a nonnumeric hypothesis. Psychometrical 29: 1-27.

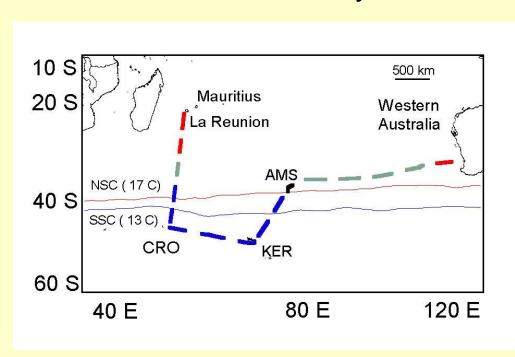
For a review of NMS, cite:

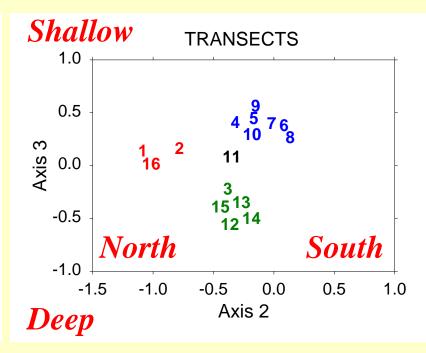
Clarke, K.R. 1993. Non-parametric multivariate analyses of changes in community structure. Australian Journal of Ecology 18: 117-143.

Kneel, N.C., Orloci, L., 1986. Applying metric and nonmetric multidimensional scaling to ecological studies: some new results. Ecology 67: 919–923.

Seabird communities of the Indian Ocean

Selected an observation day as the sampling unit for the community level analysis because we regarded the daily transects as discrete samples, separated by night time periods with no survey effort.

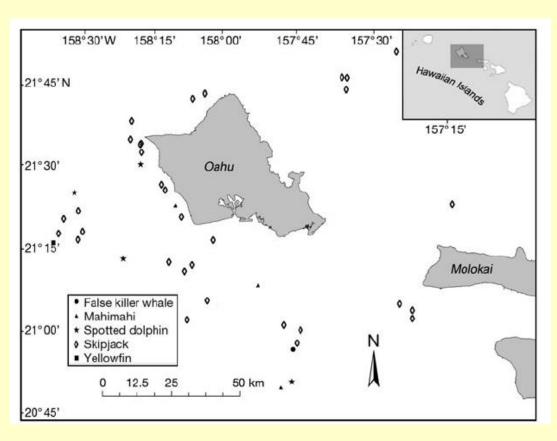

(Hyrenbach et al. 2007)


Our sample size was a matrix of 16 daily transects and 46 taxa. We standardized data using relative abundance (birds / km 2) of the taxa. To ensure each sample was weighted equally in the analysis, we used the relative Sorensen (Bray-Curtis) distance measure (Manly, 1994).

- Seabird communities of the Indian Ocean
- The NMS selected 3 habitat axes, which accounted for 73.4 % of variance observed in the seabird community
- The first axis ($R^2 = 0.15$) described latitudinal gradients associated with a concurrent SST decrease and CHL increase (to the south).
- The second axis ($R^2 = 0.41$) illustrated concurrent lat / long changes in wind speed, depth, CHL, SST, and gradients in ocean depth and SST.
- The third axis ($R^2 = 0.17$) captured the influence of onshore—offshore gradients in CHL, irrespective of lat and long.
- Because axis 2 and 3 explained a higher proportion of the observed variability, we plotted the survey transects and species distributions in 2-dimensions

(Hyrenbach et al. 2007)

Seabird community structure in the Indian Ocean



Three seabird assemblages:

sub-Antarctic, subtropical offshore, subtropical nearshore

(Hyrenbach et al. 2007)

Seabirds and subsurface predators around O'ahu

69 seabird foraging observations recorded

Presence of subsurface predators was not ascertained in 7 schools

In 2 of 62 remaining observations, no subsurface predators were present

Seabirds and subsurface predators around O'ahu

The NMDS analysis relied on a similarity matrix created using the Sorensen (Bray-Curtis) index from the raw seabird counts and 13 explanatory variables describing:

- type of fishing (commercial vs. sport)
- subsurface predator (skipjack tuna, mahimahi, spotted dolphin, false killer whale, yellowfin tuna, unknown),
- geographic location around O'ahu
 (Waianae, Penguin Bank, Kaena Point, other *).

* Only those locations contributing at least 10% (7 or more) observations considered in analysis.

Seabirds and subsurface predators around O'ahu

NMS identified 2 highly (99.3%) orthogonal axes (r = -0.082), which explained 67.9% of the cumulative observed variance

axis1, R ²: 0.502

axis2: R ²: 0.178

But NMDS stress was high (17.873), suggesting that the test performance was "fair", and the results should be interpreted with caution (McCune & Grace 2002)

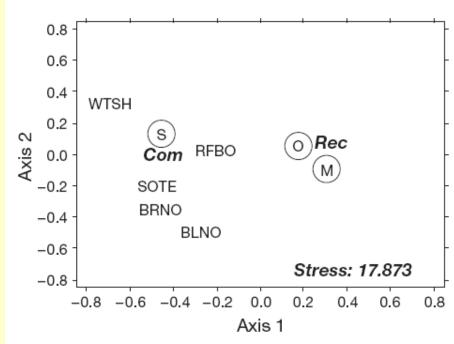


Fig. 7. NMDS plot showing 2-dimensional distances among the 5 most abundant seabirds (WTSH = wedge-tailed shearwater, SOTE = sooty tern, RFBO = red-footed booby, BLNO = black noddy, BRNO = brown noddy), 2 fishery types (commercial [Com] vs. recreational [Rec]), and 3 subsurface-predator types (M = mahimahi, O = odontocete, S = skipjack)

- Seabirds and subsurface predators around O'ahu:
- The seabird community was influenced by the presence of 3 species: wedge-tailed shearwaters, brown noddies and sooty terns
- The first axis captured the differences between commercial and sport fishing vessels, while the second axis captured variability across geographic locations
- This analysis also revealed significant correlations with first axis for 2 subsurface predators: mahimahi (+) and skipjack tuna (-)

Table 2. Kendall correlations with first and second ordination axes (n = 67). Significant values are in bold. Significance levels are: $\alpha_{0.005} = 0.341$, $\alpha_{0.05} = 0.241$. See Table 1 for scientific names of seabird species and predator type

	Axis 1	Axis 2
	tau	tau
Seabird species		
Wedge-tailed sheawater	-0.779	0.427
Brown noddy	-0.242	-0.537
Black noddy	-0.168	-0.103
Brown booby	-0.037	-0.144
Red-footed booby	-0.093	-0.017
Sooty tern	-0.106	-0.329
White tern	-0.007	0.119
Sooty or short-tailed shearwaters	-0.089	-0.147
Pomarine jaeger	-0.104	-0.098
South polar skua	-0.163	0.201
Newell's shearwater	-0.237	0.237
Great frigatebird	0.059	0.091
Vessel type		
Sport	0.351	-0.011
Commercial	-0.351	0.011
Location		
Waianae	-0.078	0.315
Penguin Banks	0.050	0.017
Kaena	-0.006	-0.125
Windward	-0.008	-0.288
Other	0.080	-0.125
Predator type		
Spotted dolphin	0.185	0.040
Mahimahi	0.281	-0.070
False killer whale	0.141	-0.016
Skipjack	-0.452	0.134
Yellowfin	-0.037	0.094
Unknown	0.241	-0.199

Take Home Messages

- NMDS is a flexible and powerful tool
- NMDS computational approach allows the integration of different datasets into multivariate patterns
- This inherent flexibility makes this technique difficult to interpret due to the inherent variability (not deterministic)
- Use NMDS to tell ecological stories that balance the "noise" in the data with "statistical significance" of patterns.
- Mind the trade-off between simplicity and completeness.
- ➤ Data exploration can help you use NMDS most efficiently, by carefully choosing the sample sizes and species / variables to include in your analyses.