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Abstract
Wildlife contaminant loads are often used to indicate ecosystemhealth, but their interpretation is
complicated by the dynamics affecting the trophic transfer of toxins. Yet, coupled analyses of trophic
position and contaminantsmay provide insights that help resolve the underlying signal of
contaminants in ecosystems.Here, we analyze heavymetal concentrations and trophic positions for
pelagic seabirds across time and space.We derivemetal-specific trophic transfer coefficients from the
literature and use them to interpret the changes in rawheavymetal concentrations in two settings: (i)
for eight seabird species across a 125-year timeline inHawaii, and (ii) for contemporary specimens of
two tern species across three ocean basins.While previous studies report how trophic position varies
in these two settings, herewe investigate how trophic downgradingmay affect the observed raw
changes in contaminants. Using this approach, wefind the highly-toxicmetal elements (Hg, As, Pb)
decline after 1980.However, several othermetals (Cu,Mn,Mo, Cd, Fe) increase from1990–2015.
Though simultaneous biomagnification and trophic downgradingmay obscure contaminant analyses
across space and time, the trophic declines we observed (�0.5 trophic level) are likely not sufficient to
influence such comparisons. In addition, as extrapolating contaminant concentrations across broad
ranges of trophic levelsmay be prone to large uncertainties, careful selection of the focal species for
analysis is required.While high trophic level species, such as long-lived, fish-eating seabirds, are ideal
formonitoring environmental contaminants across large spatial or time scales, lower trophic level
species, like primary producers and consumers,may bemore suitable for quantifying the
concentrations of bio-available contaminants entering themarine ecosystem and the base of the
marine foodwebs.Monitoring low and high trophic levels simultaneouslymay provide an integrated
perspective that is needed to quantify the contaminants entering and bio-magnifying throughmarine
ecosystems.

Introduction

Heavymetals have increasingly accumulated inmarine ecosystems due to their widespread industrial use and
subsequent leakage into the environment (Rainbow1995, Järup 2003).While somemineralmicronutrients are
vital to key biochemical processes, both in plants and animals, theymay become toxic when their concentrations
are elevated. Zn for example is necessary for hydroxylation,Mn is important for enzyme regulation, Fe andCu
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are critical for oxygen transport, and several are involved in protein stabilization (Nieboer andRichardson 1980,
Hänsch andMendel 2009). Othermetals have fewer known biological functions and are disruptive even at low
concentrations (Booth andZeller 2005, Sunderland andMason 2007,Dietz et al 2009, Sonne 2010). Elements
like Pb, Cd, andHg, broadly impact digestive, immune, reproductive, neurological, and developmental
processes across awide range of organisms (Babich and Stotzky 1985, Barceló and Poschenrieder 1990,
Tchounwou et al 2012), and as a result their concentrations are often strictlymonitored and regulated.

Despite their various levels of toxicity, density or atomicweight,many such elements are collectively
classified as ‘heavymetals’ (Duruibe et al 2007), a categorizationwhich does not account for these highly variable
processes and impacts onwild ecosystems. Improved frameworks for describing howdifferentmetals propagate
through natural systemswill help alleviate this problemof generalization andmore accurately inform
environmental hazards. To this end,monitoring the transport and availability of heavymetals inmarine food
webs is critical for resolving the threats to protected and commercialmarine life and any subsequent risks to
humans.

Seabirds are often highly-migratory, fish-eating predators that broadly integrate foodwebs across large
geographic distances into their tissues (Furness andCamphuysen 1997, Finkelstein et al 2007, Abbasi et al 2015,
Bond et al 2015, Gagne et al 2018b). As a result,many seabird species are useful indicators of the dynamics of
marine foodwebs. Seabirds are also readily accessible for study, either in large nesting colony aggregations,
through ongoing stranding programs, or in natural history repositories.Museums and other collections, for
example,may contain large historical specimen archives, and these specimens can help generate a long-term
record of ecosystemdynamics (Vo et al 2011,Wiley et al 2012,Wiley et al 2013, Ostrom et al 2017, Gagne et al
2018a, 2018b). The changes in heavymetal concentrations in seabird tissues over time could document broad
changes in environmental contamination, either from the proliferation of industrial applications or in response
to regulatory efforts to reduce their pollution (Hosono et al 2010,Hosono et al 2011).

As heavymetals pass through species in the food chain they often amplify, increasing in concentration at
higher trophic levels ("TL", Suedel et al 1994).While TLsmay be expected to vary between species, TLs are also
dynamicwithin species and can vary across space and time. Recent studies, for example, show that the TLs at
which seabirds now feed are significantly below their historical preferences (Gagne et al 2018a, 2018b), reflecting
much broader trends of ecosystem chain length compression (Estes et al 2011). The TL of seabirds in the
Hawaiian archipelago has declined broadly over 125 years. These TL trends from fishery-independent data align
withfisheries-dependent studies (Pauly et al 1998, Pauly andWatson 2005, Essington et al 2006), and appear
driven by commercial fisheries extraction and climate change (Gagne et al 2018a, 2018b). Beyond chronological
shifts, contemporary comparisons of two tropical tern populations across three ocean basins highlight
geographical within-species variability, and confirm that seabirdswithin areas of greatestfishing intensity feed at
lower TLs (Gagne et al 2018a).

Given the evidence of trophic shifts over time amongst seabirds, it is important to understand towhat extent
TL dynamicsmay confound the interpretation of changing heavymetal concentrations. Here, we explore the
coupled dynamics of TL andmetal concentrations in seabirds. Using feather samples frommuseum specimens
spanning 125 years, we examinedwhether recorded declines in seabird TLs impact heavymetal trends both in
feather tissue andwhen extrapolated to other TLs in themarine foodweb.We began by reviewing previous
literature tomodel trophic dynamics of heavymetals and estimatewhere TL andmetal concentration
relationships in foodwebs converge, differ, or demonstrate inconsistency.We then used these estimates of
trophic transfer to calculate heavymetal concentrations in seabirds corrected to a constant, reference TL.

Methods

Sample collection andheavymetal assay
We sampled feathers from seabirds in three regions: the Florida Keys (DryTortugasNational Park), the
Hawaiian Islands (multiple sites), and fromAmerican Samoa (RoseAtollMarineNationalMonument). The
Hawaii series consisted of Laysan albatross (Phoebastria immutabilis), Bulwer’s petrel (Bulweria bulwerii),
wedge-tailed shearwater (Ardenna pacifica), white-tailed tropicbird (Phaethon lepturus), brown booby (Sula
leucogaster), brown noddy (Anous stolidus), white tern (Gygis alba), and sooty tern (Onychoprion fuscatus). The
American Samoa and Florida Keys series only included brownnoddy and sooty tern.We obtained samples from
museum specimens, stranding occurrences, and nesting colonies of wild birds (USFWSpermitsMB052060-0,
MB180283-1).Weminimized impacts on historical specimens by accessing body contour feathers along the
flanks. For contemporary specimens, we collected senesced, fully-emerged flight feathers. Sample abundance
was constrained by specimen availability (10�n�24 feathers species−1, ave=17). Table S1 is available
online at stacks.iop.org/ERC/1/111006/mmedia provides the full details on each specimen and its origin.
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Published studies (Gagne et al 2018a, 2018b) and their open-access repositories (osf.io/h8bmg/, osf.io/4s9ty/)
provide extensive details on the habitats andTLs for all species as well as the rawdata used from those studies.

We debrided feathers with compressed air, stored them in heavyweight polyethylene bags (ULINETM, 4mil)
and stabilized themwith desiccant (FisherTM grade 48, 4–10mesh). To obtain the 100mg required for
contaminant tests fromhistorical specimens (e.g., Sobhakumari et al 2019)we combined individual samples
fromwithin six 20-year eras (1890–1909, 1910–1929, 1930–1949, 1950–1969, 1970–1989, 1990–2009).
Individual samples from contemporary birds (2012–2015) each had sufficientmass and avoided ensembling.
We homogenized samples into powder and sent them to theUniversity of California Davis AnimalHealth and
Food Safety laboratory (CAHFS) for standard heavymetal screens. CAHFS used inductively coupled plasma-
optical emission spectrometry ("ICP-OES", Sobhakumari et al 2019) to quantify the sample concentrations of
ninemetal elements [copper (Cu), zinc (Zn), iron (Fe), lead (Pb), manganese (Mn), arsenic (As), cadmium (Cd),
molybdenum (Mb), andmercury (Hg)]. ICP-OES requires that each raw analyte is digest withHNO3 at 190 °C
and then stabilizedwithHCL and ultrapure (18Mohm)water. To ensure standards and accuracy throughout the
analyses of all samples, CAHFS ran blanks, controls, and sensor drift checks regularly. Thismethod is relatively
cost-effective and requires amodest amount of specimenmaterial (see above). As archiving techniques before
1980 usedAs andHg, we analyzed these elements from1980 to the present (Palmer 2001, Sirois 2001,Marte et al
2006) to ensure our analyses described ecosystem contamination. Previous studies havemeasured
bioaccumulatedmethylmercury to avoid preservation artifacts (e.g., Vo et al 2011), however this would have
more than quadrupled our laboratory costs and doubled our specimen extraction requirements.

Wewinsorized raw concentrations above themetal and species-specific 95%quantile, and detections below
the reference limit were set to half the reference limit according to published practice (Wong et al 2002).
Available specimens across species and years did not always overlap in years. To facilitate comparisons between
years we linearly interpolated tissue concentrations across time between each available raw sample estimate by
metal and species. Standard deviationwas estimated from the linearly interpolated estimates through the entire
time span. The standard deviationwas then used to calculate themetal specific concentration normal 95%
confidence intervals. Intervals estimating a lower limit concentration of less than zero are truncated to zero.

Trophic transfer coefficient estimation
Previous studies have often employed log-linearmodels to explain the trophic transfer rates of heavymetals
(Campbell et al 2005, Cui et al 2011). Such approaches assume a controlled foodweb, a steady state ofmetal
availability, and ametal concentration that follows a log-linear relationshipwith TL. As none of these
assumptionsmay hold in an uncontrolled foodweb or acrossmetals (Suedel et al 1994), we used a spline
regressionmodel with defined constraints that can estimate log-linear and nonlinear relationships. This
modeling approach fit a smoothing splinewith three degrees of freedom. Themodel wasfixed to the
concentration observed at the lowest TL using aweighted vector (R, Core Team2014). Themodel thenwasfit to
best predict the observed empirical concentrations across all TLs.

To collect empirical data fromwhichwe could estimate the trophic transfermodels, we obtainedmetal
concentration data from varied foodweb studies across aquatic systems.We only used studies that were
conducted in an unbounded field-based setting, spanned at least TLs 1–3, andmeasured�5 of the 9metals in
our contaminant screens (Suedel et al 1994, Campbell et al 2005). Formetals not included in a study (Fe), we
used the nextmetal available (Mn)with the closest atomicmass. Fittedmodels estimate the trophic transfer
coefficient (TTC) for eachmetal at any TL. Allfinalmodels were calibrated so the y-intercept (the TTCwhen
TL=0, the foodweb base) is equal to 1. As a result, biodilution occurs when 0<TTC<1 and
biomagnification is whenTTC>1 (figure 1). Script and code is available in the online repository.

Tissue concentration correction
Weusedmodelled TTC relationships to assess howdeclining TLs influence heavymetal concentrations.We
plotted the rawmetal concentrations over time and across spatial populations as a series of uncorrected tissue
contaminant values. Since TL is dynamic, we used the TTCmodels to adjust the raw concentrations to reflect the
observed chronology of trophic changes (figure 2). To do this, we first cross-referenced each feather sample to an
associated TL for that specific species in time. Trophic estimates were drawn froma previous study that used
feathers sampled from the same locations and dates we analyzed here for contaminants (Gagne et al
2018a, 2018b). Thenwe corrected each sample series to the base of the ecosystem (TL=0) and themaximum
observed seabird TL (TLmax=4.3).We corrected themetal concentrations to TL=0 (equation (2),
TTC TL constant= ) by dividing the tissue concentration by the TTC estimated for the time- and space-associated
TLs (equation (2),TTCTL tissue= ). Temporal TLswere derived in earlier publishedwork using equation (1) (Gagne
et al 2018a). For correction to a constant TL, themultiplier was themetal-specific TTC at the desired TL divided
by themetal-specific TTCgiven the TL of the tissue, following equation (2).
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All analyses and data visualizationswere performed in the R environment (R,Core Team2014).

Figure 1.Metal concentrations against trophic level in amarine ecosystem.Data fromCampbell et al 2005 show specimenmetal
concentrations (ppm) for nine elements against the specimenTLs sampled from aNorth Atlantic pelagic community.We
standardized the ppmdata to reference value of 1 at the base of the foodwebwhere primary producer species uptake availablemetals
(TL=0). Here, ppmvalues>1 indicate bio-magnification, where values<1 indicates trophic dilution. Grey shaded intervals show
the range of TL change observed inHawaii from1890–2015 in eight species of seabirds. Solid lines describe trophic transfer spline
models that describe the general trophic pattern of each element. Panels are sorted by decreasingmetalmagnification. Iron (E)was not
measured in the study, and therefore we use the trophic transfer formof the next closest element on the periodic table (Mn) as a proxy.
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Results

Weobtained heavymetal concentrations from98 samples fromHawaii (67), Florida (15), andAmerican Samoa
(16). From these data, we comparedmetal concentrations withinHawaii from1891–2015, and across all
locations from1990-present.

TTCs vary considerably between elements and across ecosystem types. Figure 1 shows the transfer
coefficients we used to correct our tissue concentrations.We used the TTCs from the pelagic study to correct our
tissues because itmost closely reflected the ecosystem fromwhichwe obtained our feathers.figure S2

Figure 2. Some highly-toxicmetals decline over time, independent of coupled trophic dynamics. A-C show the longitudinal trend and
magnitude of heavymetals under three different trophic corrections. Open circles represent the rawmetal concentrations, solid lines
representmean concentration across species, and shaded bands are the 95%CI (zero-truncated). All series are an eight-species
ensemble from theHawaiian Islands. The small difference between raw (A, teal) and constant (B, gray)TL correction shows the small
effect that declining TLhas on tissue concentrations over time. The baseline correction (C, tan) shows the large impact that adjustment
to TL=0 has onmagnitude. Panels are sorted top-to-bottom according to concentration trend over time.
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summarizes the results of three additional studies that span large portions of foodwebs (0�TL�5) in three
aquatic ecosystem types. Themetal concentrations documented frompelagic (figure 1), coastal (figure S2(b)),
and freshwater (figure S2(c)) studies reflect the combined influence ofmetabolic and environmental uptake and
loss (table 1). Across all studies, totalHg concentrations have a positive log-linear form, increasingwith TL
across the entire trophic web. This alignswith the documented bioaccumulation ofHg in large, predatory fish
(Bodaly et al 1993, Branco et al 2007). In all studies, Asmagnifies across a range of TLs, though it dilutes when
TL>3 in the coastal study (figure S2(b)). Only in the pelagic study (figure 1(i)) does Pbmagnify across a portion
of the foodweb, and then onlywhenTL<3. The variability in all othermetals suggests no consistent
relationships exist, underscoring the need to characterize the local dynamics of foodwebs.

While some of the known toxicmetals (Hg, As, Pb) decline across the 125 year chronology inHawaiian
seabirds, others (Zn) appear relatively constant (figure 2). Concentrations for the remainingmetals (Fe, Cu,Mn,
Cd,Mo) are relatively stable from1890–1990, but increase thereafter. Significancewas tested on reciprocal log
transformed concentrations to validate these observed trends. A significant increase through timewas detected
in Fe, whereas declines were significant in As,Hg, and Pb (table S1). Infigure 1, we plot concentrations in their
raw form, and alsowhen corrected according to the observed TL declines and the associated TTC for pelagic
systems (figure 2(a), Campbell et al 2005). For allmetals, the impact of trophic corrections affects the absolute
concentration.However, while seabird TLs did change over time (figure 1) andTL does influencemetal
concentrations in oceanic systems (figures 2(a), (b)), the observed TL changes (~0.5 TL)were not large enough to
broadly alter the chronology of rawmetal concentrations.

Independent of temporal trend direction, Zn is the highest (102.00 ppm, sd=5.80) long term average raw
concentration inHawaiian tissues, followed by Fe (89.70 ppm, sd=29.70), As (70.20 ppm, sd=42.30), Pb
(16.70 ppm, sd=11.10), Cu (6.70 ppm, sd=1.40), Hg (6.50 ppm, sd=3.40),Mg (2.50 ppm, sd=0.30), Cd
(0.50 ppm, sd=0.05), andMb (0.30 ppm, sd=0.03). Based on previously published thresholds established
fromadverse effects on seabirds (Burger andGochfeld 2004), on average Pb is above the adverse effects threshold
of 4 ppm,Hg is just below the threshold of 5 ppm, andCd is below the adverse effect threshold of 2 ppm. Pb does
not drop below the threshold until 1997,Hg does in the 1980s, andCd appears to have been below the threshold
during the entire study period.

Having addressedmetal concentrations across time, figure 3 plots their concentrations across three spatially-
distant locations for two tropical terns. Aswith the time series data, we again corrected raw values based on the
observed TL differences between sites (figure 3(j)). Unexpectedly, severalmetals had the highest concentrations
at the remote and protected location, Rose Atoll: Pb=3.4 ppm,Cd=3.2 ppm, andHg=8.3 ppm. As a
comparison, earlier work on JohnstonAtoll in 1990 showed overall lowermeans in the samemetals: Pb=2
ppm,Cd=.22 ppm, andHg=1.9 ppm [26, 28].

Discussion

Corroborating previous studies, we find that the highest TL states in time and space can have some of the highest
contaminant loads (figures 2–3). This relationship is not simple andmay not take the same form throughout
TLs, with varying uncertainty amongmetals andTLs (figure 1). Therefore, estimating howTLmagnifies or
dilutes contaminants requires careful derivation, on a case-specific basis with respect to species and ecosystem
types. Regardless, we find that some of themost toxicmetals decline over time, perhaps an encouraging response
to their regulation. However, several othermetals increase after 1990 (figure 2), indicating that potential
ecosystem accumulation and organismal threats remain. In addition, we find seabirds sampled at themost
remote site (RoseAtoll) had the highest detected concentrations for severalmetals (figure 3) confirming the

Table 1. Definitions of terms pertaining to trophic dynamics of contaminants.

Term Definition

Bioconcentration The uptake of a contaminant by an aquatic organismwherewater is the sole contaminant source

Bioaccumulation The uptake of a contaminant frombothwater and sources

Biomagnification The process of both bioconcentration and bioaccumulation that result in increased tissue concentrations of

a contaminant as it passes through two ormore trophic levels

Biodilution The decrease in concentration of a pollutantwith an increase in trophic level

Trophic Transfer Coefficient Defined herein as the concentration of a contaminant in consumer tissue divided by the concentration

contaminant in preceding trophic level. Simply, ameasure of the potential for a contaminant to bio-

magnify or dilute

All definitions taken fromMacek et al 1979 andCampbell et al 2005
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distant reach of some pollutants.We discuss the implications of our coupledmodels on themagnitude,
temporal trends, and the geographic comparisons of heavymetals below.

Correcting for trophic transfer
The degree towhich changing TL affectsmetal concentrations is linked to the range of TL shift that an organism
experiences over time. For trophic impacts to affect contaminant signalsmeasurably in seabirds across time,
observed TL declinesmay need to be on or greater than 1–2TLs. Such a shift, say from4 to 2, is equivalent to
switching from a high-level predator to herbivore habits. Due to physiological constraints, this is unlikely to be a
broad pattern observed inwild organisms. InHawaii, we observed an average 125-year decline of 0.4 TL (Gagne
et al 2018a), with trophicmodels suggesting dietary replacement offishwith squids. It appears that while those
dietary changes reflect significant ecosystem shifts, suchTL declinesmay notmeasurably alter raw contaminant
trends (figure 3). However, when correctingmetal concentrations to the base of the foodweb, largermultipliers
will inflate uncertaintymore than if correcting to a nearby constant TL. For example, if we extrapolate outside
the range of TLs observed, when correcting to TL=0 fromTL=4, our TTC estimates range by two and a half
orders ofmagnitude. This result highlights the importance of carefully selecting the tissues sampled from

Figure 3.Ensemble comparison of concentrations in three ocean regions. A-I, Ensemblemetal concentrations for two tropical terns
sampled in the South Pacific (Rose Atoll, American Samoa), North Atlantic (DryTortugas, Florida), andNorth Pacific (Main
Hawaiian Islands). Box plots represent the raw tissue concentration and the trophic correction toTL=0, given observed geographic
variation in TL (J).Median values ofHg, Fe,Mo, andCdwere highest at remote Rose Atoll (American Samoa), perhaps a response to
point source pollution from amajor ship grounding. Zn,Mg, andCu values were highest in Florida, while As peaked inHawaii.
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relevant TLs of interest, rather than relying on large back calculations to correct to the desired TL. Beyond the
impacts of TL and bioaccumulation, foraging depth and other trophic dynamics are increasingly shown to affect
Hg loadings, in particular, within species (Ramos et al 2013, Elliott and Elliott 2016,Madigan et al 2018) and
deservemore attention.

Reconciling trends in time and spacewith other studies
Pb, As, andHg showed steeper declining trends over time than any othermetal in the assay. Though, in
comparison to earlier studies in 1990 and 1998, our ownuncorrectedHawaiian Pb andHgwas higher (1990:
Pb=5.8 ppm,Hg=9.9 ppm, 1998: Pb=2.2,Hg=6.2 ppm) thanManana andMidway Islands in 1990 and
1998 (1990: Pb=2 ppm,Hg=1.6 ppm, 1998: Pb=1.6 ppm,Hg=2.1 ppm) (Burger andGochfeld 2000).
Though higher inmagnitude, our observed decline in totalHg through time agrees with similar work on
albatross in theNorth Pacific (Vo et al 2011) that showed a temporal declining trend in totalHg. Itmay be
possible that thesemetals have longer records of use in these locations due tomilitary presence and global
industrial use. Furthermore, legislation to reduce their use and leakage intomarine systemsmay have influenced
these declines,much of it enacted in the late 20th century (e.g., CleanAir Act, CleanWater Act, andMercury
Export Ban). However, without awell-documented historical record of sources ofmetals, it is unclear whether
these levels are a product of an acute event or point source (e.g., a shipwreck) or a legacy of persistent
accumulation fromnonpoint source pollution over time.

Geographic comparisons propose that remote atolls are not immune to persistent pollutants. Our
contemporary (2012–2015) data suggested that Rose Atoll has the highestmean concentrations for several
detrimental heavymetals: Pb, Cd, andHg. For comparison, previously publishedwork on the similar Johnston
Atoll around the same time had lowermeans but the same rank order for thosemetals (Burger et al 1992, Burger
andGochfeld 2000). These high concentrationsmay, in small part, be influenced by amajor ship grounding
event at Rose Atoll, wheremetal contaminants have remained persistent (Schroeder et al 2008). In addition to
this point source, these high concentrations could also be a function of the atmospheric convergence bands that
this atoll often resides in, which canmagnify concentrations stemming fromhigh output activities, such as
industrialization inAsia (Cheng 2003).

Interestingly, this gradient of higher contaminant concentrations in the South Pacific contradicts published
work about anthropogenic impacts on foodweb characteristics,measured via seabirds’ feather tissues (Gagne
et al 2018a). Rose Atoll appears to be the least impacted via commercial fishing pressures, but themost impacted
via heavymetal contaminants. This dichotomy highlights the independence and lack of correlation among
variousmeasures of anthropogenic impacts rather than the general degradation ofmarine ecosystems.
Nonetheless, our geographic comparison of contemporary specimens is a small dataset and future studies will
improve the certainty of these results.

Heavymetal screens
Numerous contaminants threaten oceanwildlife and can indicate the extent of environmental pollution in
marine systems.Here, we chose heavymetal screens as their analysis is logistically feasible (e.g., cost, tissue
preparation, tissue amount), their pathologies and hazardous limits are often described (Burger and
Gochfeld 2004), and they are easily linked to anthropogenic activities (Furness 2017). As a result, we could
examine a large sample size (~100 specimens) that included historical samples providing a 125-year longitudinal
analysis. However, debate exists about the classification of these nine elements as heavymetals and their utility in
evaluating environmental toxins (Nieboer andRichardson 1980, Pourret and Bollinger 2017). Nominally, heavy
metals are defined asmetals with a specific density>5 g cm−3, though this has never been authoritatively defined
(Pourret and Bollinger 2017). This results in Fe being groupedwithHg, though the two elements have
remarkably different biological concentrations and consequences (Nieboer andRichardson 1980). Therefore, it
appears that futuremetal toxin assays should consider basing screen selection on impacts and biologically
significant binding preferences toO,N, or S (Nieboer andRichardson 1980), as opposed to their atomicmass.
To understand the ultimate impacts ofmetal contaminants to the organisms themselves, additional tissue
quantifications of seleniummay be useful, as this elementmay play a significant role in reducing heavymetal
toxicity (Ikemoto et al 2004).

Conclusion

Building on previouswork documenting changing seabird TL in time and space, this study investigated how that
dynamic interfaces with heavymetal signatures in seabird feathers. Twomain contributions emerge from this
work. Documenting possible trends in seabird tissues temporally and spatially sheds light on the intricacies of
trophic transfer, and sets up a framework for the interpretation of temporal environmental signatures ofmetals.
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Based on this analysis, it appears that the decline in TL inmost seabirds is not large enough to drastically impact
the estimatedmetal concentration trends in their tissues. Additionally, we show that estimatingmetal
concentrations for other TLs far from those of seabirds is prone to large uncertainty, andwe caution against
using trophic transfer coefficients to extrapolate to other foodweb components>1TL from the sampled TL. In
addition, as extrapolating contaminant concentrations across broad ranges of TLsmay be prone to large
uncertainties, careful selection of the focal species for analysis is required.While highTL species, such asfish-
eating seabirds,may bemore suitable formonitoring environmental contaminants across large spatial or time
scales, lower TL species, like primary producers and consumers,may bemore suitable for quantifying the
concentrations of bio-available contaminants at the base of themarine foodwebs. Together, these two
perspectives can provide insights into the pathways andmechanismsmetals followwhen entering and traveling
through themarine ecosystem.Namely, the documented declines in some adversemetals indicate that heavy
metal concentrationsmay reflect changes in legislation and reductions in anthropogenic contaminant
accumulation. Thus, we suggest future studies continue to illuminate the coupled spatial complexity and
temporal gradient ofmetal availability and foodweb dynamics.
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