2018 Pacific Seabird Group 45th Annual Meeting La Paz, Baja California Sur, México 21–24 February 2018 ## DIET OF RED-FOOTED BOOBIES PROVISIONING CHICKS ON O'AHU: AUGMENTED WITH GENETIC ANALYSIS Sarah E. Donahue ¹, Josh Adams², K. Davíd Hyrenbach¹, Brett Olds¹, and Mark Renshaw¹ ¹ Hawai`i Pacific University, Oceanic Institute, Waimanalo, HI 96795. ² U.S. Geological Survey, Western Ecological Research Center, Santa Cruz, CA 95060. The diet of Red-footed Boobies, (Sula sula) was quantified using 106 regurgitations collected opportunistically at Ulupau Crater, O`ahu, Hawai`i, from 81 adults during two years: 2014 (1–7 June) and 2015 (17 June–27 July). We sorted 1007 prey items into 3 categories: Fish, Squid, and Other (extremely digested "mush" and parasitic isopods). The average number of prey items per sample was 8.1 ± 5.7 (2014) and 10.6 ± 8.4 (2015). First, we assigned previtems a categorical freshness value: 1 (perfect condition), 2 (superficial digestion), or 3 (highly-digested and incomplete). Next, we measured sizes and took genetic samples from 492 items (freshness 1 and 2). 82% (n = 401) of those items were genetically identified. Rarefaction analyses revealed robust estimation of species richness in the diet which included 29 fish and 3 squid species. Moreover, 98.7% (232 of 235) of identified squids were Purpleback flying squids (Sthenoteuthis oualaniensis). Despite the dominance of fish in 2014 (%PSIRI fish 32.3%, squid 15.1%) and 2015 (%PSIRI fish 29.9%, squid 22.3%), diet composition varied significantly among the two study years. Squid were also significantly larger in 2015 (7.2 \pm 1.1 cm) than in 2014 (6.3 \pm 1.7 cm), indicating that differences in relative abundance and size may have been associated with El Niño conditions in 2015, similar to results from French Frigate Shoals (Seki & Harrison 1982). Altogether, due to Red-footed Boobies having opportunistic diets, we suggest they can be used to sample variability among epipelagic nekton assemblages during periods of contrasting oceanographic conditions.