

## You are What You Eat:

studying the diet and plastic ingestion of Hawaiian seabirds

David Hyrenbach khyrenbach@hpu.edu





# Speaking on Behalf of a Big Flock

Michelle Hester <sup>1</sup>, Sarah Donahue <sup>1, 2</sup>, Jessie Beck <sup>1, 3</sup>, Andrew Titmus <sup>2</sup>, Shannon Lyday <sup>2</sup>, Matt Dwyer <sup>2</sup>, Zora McGinnis <sup>2</sup>, Sarah Youngren <sup>2</sup>, Dan Rapp <sup>2</sup>, Erica Donnelly <sup>1, 3</sup>, Cynthia Vanderlip <sup>4</sup>, Josh Adams <sup>5</sup>

<sup>1</sup> Oikonos - Ecosystem Knowledge, P.O. Box 1918, Kailua, HI

<sup>2</sup> Hawai'i Pacific University, Marine Science, Waimanalo, HI

<sup>3</sup> Coastal Ocean Mammal & Bird Education and Research Surveys (COMBERS), Moss Landing Marine Laboratories, Moss Landing, CA

<sup>4</sup> DOFAW, State of Hawai'i DLNR, Honolulu, HI

<sup>5</sup> U.S.G.S. Western Ecological Center, Santa Cruz, CA











## Road Map

I. Motivation

II. Background

III. Case Studies

- community study
- local index
- regional index

III. Emerging Issues



# I. Motivation: Monitoring Trends

Monitoring plastic pollution trends in the North Pacific

Sizes

Types





# Challenge: Sampling Plastic in the Ocean

Vessel-based surveys are very expensive and time consuming







# Solution: Let the Birds do the Sampling



# Why Use Seabirds to Sample the Ocean?





- > Numerous, Far-ranging, Colonial breeders
- Seabird species forage in different areas and catch different prey in different ways

# II. Background - Seabird Foraging Guilds



Aerial Predators
Frigates
Terns
Storm-petrels

Plungers / Divers
Terns
Tropicbirds
Shearwaters

Surface Foragers
Albatrosses
Shearwaters
Petrels

(Ashmole 1971)

## Diverse Feeding Methods in the Tropics









# Opportunistic Feeders



Velella velella



Halobates spp.



Lepas spp.



(Harrison et al., 1983; Gould et al., 1997)

## Use Oceanographic Features

> Foraging at features which concentrate prey at surface



Fig. 1. The Mozambique Channel showing the -200 m depth contour (dotted line) separating neritic shelf areas from oceanic waters, and the sea-surface temperature isotherms (°C) in September 2003



Frigatebirds patrol edge of eddies (Weimerskirch et al., 2004)

## Widespread Reliance on SSPs

(Ballance & Pitman, 1999)

Many tropical seabirds associate with subsurface predators (tunas/cetaceans)



Widespread: 90 species from 27 genera (Ballance, 1993)

Pervasive: for many species, majority of feeding events

in association with subsurface predators

(70% feeding events in flocks, Central Pacific) (King, 1970)

Persistent: distinct "tuna-bird" community (Ballance et al., 1997)

## Objective

To sample pelagic plastic (abundance / types) using multiple Hawaiian seabirds

- Develop standardized analysis methods
- Establish metrics for pollution monitoring



# IIIa. Comparative Study: Tern Island (FFS)



- > 16 Breeding species
- Diverse foraging guilds

(Dearborn et al. 2001, Harrison et al. 1983)





## Plastic Ingestion Incidence (2006-13)

Top Five Species with Plastic Ingestion (FFS)



Plastic Incidence

(number)

| Age /<br>Species | TRSP | BOPE | LAAL | BFAL  | WTSH |
|------------------|------|------|------|-------|------|
| Chicks           | 100% | 100% | 96.7 | 96.4% | 50%  |
|                  | (57) | (5)  | (92) | (28)  | (2)  |
| Adults           | 100% | 100% | 89.5 | 58.8% | 100% |
|                  | (1)  | (1)  | (19) | (17)  | (2)  |

# Plastic Ingestion Incidence (2006-13)



NOTE: Only "common" Species \* Age groups (> 8 birds sampled) are considered

# Plastic Ingestion Incidence (2006-13)



- > Laysans have higher incidence than Black-foots
- > Chicks have higher incidence than adults

# Plastic Mass Ingested by Petrels



> Ingested plastic mass higher in chicks than adults

# Tristram's Storm Petrel (Oceanodroma tristrami)

Poorly studies: small / nocturnal / burrowing

100 % plastic ingestion incidence (n = 57 birds)





# Tubenose Seabirds (Order Procellariiformes)

#### Two Stomach Chambers



- Expandable
- Thin walled
- Storage
- Chemical digestion

#### Gizzard (upper GI)

- Robust
- Muscular
- Physical digestion

#### · Intestines (Lower GI)

- Nutrient absorption
- Water absorption





## TRSP - Stomach Contents



Sieve (0.5 mm)



Sort

Plastic

Natural Food

Natural Non-Food



### Tristram's Storm-Petrel - Plastics





Large number of ingested fragments

32 - 615 pieces per bird

Overlap in fragment size by chamber

Pro: 0.64 - 11.58 mm

Giz: 0.35 - 7.50 mm

- Significantly larger fragment sizes in the proventriculus
- Larger plastic mass in the Proventriculus

#### Tristram's Storm-Petrel - Diet

Incidence +/- 2 S.D. (Binomial Probability)



- > Diverse diet: squid and fish; neustonic prey
- > Ingestion of natural non-prey items

# Tristram's Storm-petrel - Prey



Halobates spp.



Janthina spp.



Myctophids



Flying Squid

# IIIb. Case Study 2: Regional Metrics



# Approach - Chick Boluses









# Methods - Characterizing Plastic



- ➤ 4 Categories
  Fragments, Foam,
  Line and Sheet
- Fragment
  Size / Color







## Results - Bolus Mass

- > Every bolus contained plastic (100 %)
- > Plastic accounts for 70 % of bolus mass



## Results - Bolus Mass

> Line and foam are most abundant plastic types





## Results: Plastic Mass

Fragment size distribution from 20 boluses and 5 chick stomachs. Wide range: from 1 to 73 mm





# Satellite Tracking - Kure Atoll 2008



Tracks of 14 complete foraging trips by 7 BFAL tagged at Kure Atoll (star) during chick-rearing period (May - June) of 2008. Tracks are superimposed on extent of management jurisdictions and ETOPO 1-minute bathymetry (highlighting seamount locations).

## Habitat Use - Kure Atoll 2008



Seamounts (< 200m) 10.83 +/- 9.37 Pelagic (> 2000m) 89.17 +/- 9.37

Mean (+/-5D)proportional time BFAL spent within distinct bathymetric domains, from ETOPO 1-min relief data within 2.3 km radius from interpolated locations

## Implications - Plastic Metrics







- Kure Black-footed Albatross collect plastic from the Western North Pacific
- > Plastic incidence in boluses not a sensitive metric
- > Need to focus analysis on plastic loads / types
- > Efforts to document size / color / origin

## IIIc. Case Study 3: Local Metric





Dominant in feeding flocks with subsurface predators (skipjack tuna, aku)

(Hebshi et al., 2008)

# Wedge-tailed Shearwater Foraging



Ray Boland

Breeding Wedgies forage within 200 miles of their colonies in Main Hawaiian Islands

(USGS, Adams et al. in prep)

#### Approach - Opportunistic Collections



- 142 chicks necropsied (2009 and 2010)
- Quantified incidence and mass of ingested plastic (proventriculus / gizzard)
- Sampled tissues for isotopic diet and pollutants





## Methods - Quantifying Ingested Plastic

- · Plastic Incidence & Mass by stomach chamber
- · Plastic Type & Size by stomach chamber
- · Number of Squid Beaks by stomach chamber
- · Other Prey Items by stomach chamber



Fragment Size
Range: 0.3 - 7.7 mm



Squid beaks and lenses

# Results - Incidence: % of birds ingesting

| GIZZ | ARD |          |        |  |
|------|-----|----------|--------|--|
| year | n   | %plastic | %beaks |  |
| 2009 | 70  | 52.9     | 94.3   |  |
| 2010 | 72  | 75.0     | 97.2   |  |

| PROVI | ENTR |          |        |  |
|-------|------|----------|--------|--|
| year  | n    | %plastic | %beaks |  |
| 2009  | 70   | 28.6     | 74.3   |  |
| 2010  | 72   | 44.4     | 75.0   |  |

Is probability of finding plastic influenced by?

(stomach / gizzard):

- what organ you study YES (higher in gizzard) (p = 0.006)

(2009 / 2010):

- what year you study YES (higher in 2010) (p = 0.02)

## Wedge-tailed Shearwater: Plastic Incidence

| Sample          | Age<br>Class        | Years   | N   | Source        | Mean Plastic Incidence (%) |
|-----------------|---------------------|---------|-----|---------------|----------------------------|
| Fry<br>et al.   | Breeding<br>Adults  | 1984    | 20  | Collected     | 60.0                       |
| Robinson et al. | Breeding<br>Adults  | 2014    | 28  | Dog Kill      | 71.4                       |
| Lyday<br>et al. | Fledging<br>Chicks  | 2009-10 | 142 | Opportunistic | 72.5                       |
| Dwyer<br>et al. | After<br>Hatch-Year | 2010-15 | 45  | Opportunistic | 62.2                       |

- Increase in adult incidence since 1980s
- Chicks have higher ingestion rates than adults

## Implications - Plastic Metrics





- Breeding Wedge-tailed Shearwaters collect plastics from vicinity of their colonies (200 miles)
- > Next steps: focus on interannual variability
- > Questions: links with prey (secondary ingestion?)

## IV: Emerging Issues - New Species

Large plastic fragment (14.5 cm x 3.25 cm) ingested by a White-tailed Tropicbird (O'ahu)

(Hyrenbach et al. 2013)

Aku: 60% (n = 10)

Mahi-mahi: 12.5% (n = 8)

Example: Large plastic fragment (9cm x 6cm) ingested by Mahi-mahi





#### Plastic Ingestion Incidence - FFS 2006-13



Laysan Albatross: 93.1 %

Black-footed Albatross: 77.6 %



Greater
Frigatebird:
38.4 %



Tristram's
Storm-petrel:
100 %

Bonin Petrel: 100 %

## Plastic Ingestion Incidence - FFS 2006-13



PLUNGE DIVERS and "TUNA BIRDS"

Brown Booby:

25.0 %

Wedge-tailed Shearwater:

75.0 %

Brown Noddy:

7.7 %

Red-tailed Tropicbird:

16.7 %

Sooty Tern:

0.0 %

Red-footed Booby:

4.5 %

Black Noddy:

0.0 %



# Scope of Plastic Ingestion - Hawai'i

100% Hawaiian (Black-Footed, Laysan) albatross boluses have plastic (since 2008)

On average 70% of Black-footed albatross bolus mass (70% bolus volume) is plastic

72.5% of O'ahu Wedge-tailed Shearwater chicks contain plastic (2009 - 2010)

100% of Tern Island's Tristram's Storm-petrels contain plastic (2007-13)

New records: boobies, noddies, tropicbirds





# Contaminants & Sub-lethal Effects









# Acknowledgements

 Funding: National Fish & Wildlife Foundation marine debris program, Papahānaumokuākea Marine National Monument, Hawaii Pacific University, Oikonos - Ecosystem Knowledge





Field / Lab: Students & field crews:
 USFWS, State of Hawai'i - DOFAW



· The Birds







