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Abstract

Acceptance of marine protected areas (MPAs) as fishery and conservation tools has been hampered by lack of direct
evidence that MPAs successfully seed unprotected areas with larvae of targeted species. For the first time, we present direct
evidence of large-scale population connectivity within an existing and effective network of MPAs. A new parentage analysis
identified four parent-offspring pairs from a large, exploited population of the coral-reef fish Zebrasoma flavescens in
Hawai’i, revealing larval dispersal distances ranging from 15 to 184 km. In two cases, successful dispersal was from an MPA
to unprotected sites. Given high adult abundances, the documentation of any parent-offspring pairs demonstrates that
ecologically-relevant larval connectivity between reefs is substantial. All offspring settled at sites to the north of where they
were spawned. Satellite altimetry and oceanographic models from relevant time periods indicated a cyclonic eddy that
created prevailing northward currents between sites where parents and offspring were found. These findings empirically
demonstrate the effectiveness of MPAs as useful conservation and management tools and further highlight the importance
of coupling oceanographic, genetic, and ecological data to predict, validate and quantify larval connectivity among marine
populations.
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Introduction

The utility of marine protected areas (MPAs) as management
and conservation tools for replenishing populations outside MPA
borders depends on two processes: spillover of mobile juveniles
and adults into adjacent unprotected habitat, and seeding of
unprotected sites with larvae spawned within MPAs [1]. While
there is mounting evidence for localized spillover [2,3], there have
been no empirically documented cases of MPAs seeding
unprotected sites, which has impeded acceptance of this
management tool [4]. Seeding is a form of population connectiv-
ity, which, in marine metapopulations, is characterized by the
dispersal of planktonic larvae among local populations [5]. Recent
empirical efforts to track larval dispersal have demonstrated
localized self-recruitment [6–10], but have not documented larvae
seeding distant or commercially fished sites.
The rarity of data demonstrating larval seeding is due to the

challenges associated with documenting dispersal events in marine
populations. Determining patterns of larval dispersal is especially
challenging due to the minuscule sizes of larvae and the vast ocean
environment through which they travel [11]. Additionally, most
marine populations are characterized by high rates of genetic
exchange [12] between chemically homogenous environments

[13], which severely constrain available methods for determining
ecologically-relevant patterns of dispersal. Therefore, we applied a
new genetic parentage method [14] to directly determine how far
and to what extent the larvae of an abundant coral-reef fish
disperse from their natal populations.
The use of genetic parentage analyses to directly document

dispersal presents a largely unexplored, yet promising alternative
to traditional approaches. Until recently, parentage analyses have
been methodologically constrained to environments where fishes
with short pelagic larval durations occupy locations where all or
most of the adults can be sampled [8,15]. Here, we show that
difficulties associated with applying parentage methods to large
natural populations have been overcome with a new Bayesian
approach that fully accounts for large numbers of pair-wise
comparisons and unknown probabilities of finding true parent-
offspring pairs [14]. This new method is well suited for a broad
range of systems where only a small proportion of candidate
parents can be sampled (including the majority of marine species).
On coral reefs of the Island of Hawai’i, yellow tang (Zebrasoma

flavescens) serve an important ecological role as abundant
herbivores (Fig. 1) [16]. Juvenile yellow tang are also of substantial
economic importance because they comprise 80% by number and
70% by value of all fish collected by the aquarium trade on the
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Island of Hawai’i [3]. To sustain the aquarium fishery, a network
of 9 MPAs was established along the Kohala-Kona coast in 1999,
resulting in the prohibition of commercial aquarium collection
along 35% of the 150 km coastline of West Hawai’i [3]. After
several years of protection, evidence for spillover of adults was
documented near the boundaries of these MPAs [3]. This finding
demonstrates that the West Hawai’i MPA network is effective in
one regard, but cannot fully explain documented increases in
catch of the targeted, sedentary juveniles and increased recruit-
ment to MPAs [17]. These observations highlight the need to
identify whether these MPAs successfully seed fished sites with
larvae.
To address this question, we employed new genetic parentage

methods to directly track successful dispersal events. We coupled
these results with oceanographic analyses to determine the extent
to which these events are predictable and to search for deviations
from a null model of passive dispersal. Lastly, we present our
parentage results within the context of in situ estimates of adult
abundance to illustrate that the rates of connectivity between
sites must be substantial. These multidisciplinary approaches are
essential for informed conservation and management deci-
sions, especially regarding the design and evaluation of marine
reserves.

Materials and Methods

Sampling
We collected tissue from 1,073 adults and recently settled

juveniles yellow tang from 9 reefs located around the Island of
Hawai’i (Fig. 2). Yellow tang were collected by divers on SCUBA
and taken to the surface, where they were measured and had a
sample of their dorsal fin tissue clipped for genetic analyses. Adults
were collected from July through August 2006. Juveniles were
collected from June through August 2006, the annual settlement
season, with monthly collections at sites located on the west

(Kohala-Kona) coast of the Island of Hawai’i (see Table 1 for
sample sizes). Yellow tang were present at low densities along the
entire northeast coastline and we were only able to sample one
individual at Laupahoehoe.

DNA extraction, amplification, and scoring
All fin-clip samples were stored at -20uC in 95% non-denatured

ethanol. DNA was extracted using ChelexH (Biorad Laboratories)
and proteinase K. PCR details are available elsewhere [18].
Samples were genotyped on an ABI 3100 capillary sequencer and
scored with GENOTYPER software (Applied Biosystems). Data
were scored, binned, and subsequently re-scored to check for
errors. Distinct allele bins were created with FLEXIBIN [19]. Two
observers independently scored 65% of all genotypes with a
discordance rate of less than 0.1%. Study-specific error rates were
calculated by re-genotyping 96 randomly chosen individuals at all
20 loci. All 1,073 samples were genotyped at 15 microsatellite loci
[18]. Putative parent-offspring pairs were genotyped at 5
additional microsatellite loci. Additionally, a sample of 95
individuals was genotyped at the 5 additional loci employed for
parentage analysis to calculate unbiased estimates of allele
frequencies.
Loci were tested for deviations from Hardy-Weinberg equilib-

rium (HWE) in GENEPOP [20] with 10,000 batches and 5,000
iterations per batch. Tests for linkage disequilibrium were
conducted in both GENETIX [21] (5,000 permutations) and
GENEPOP (10,000 batches, 10,000 iterations per batch). Global
and pair-wise FST values were calculated with FSTAT [22].
Mantel tests for isolation by distance analysis were calculated with
ISOLDE as implemented in GENEPOP [20].

Parentage analyses
Because yellow tang do not move more than 1 km after settling

to reef habitat [23], the along-shore distances between parents and

Figure 1. Adult yellow tang (Zebrasoma flavescens) photographed off the western (Kohala-Kona) coast of the Island of Hawai’i,
where they occur at high densities. Approximately half a million juvenile yellow tang (representing more than 1 million U.S. dollars) are collected
from the island by the aquarium industry each year. Photo: W.J. Walsh.
doi:10.1371/journal.pone.0015715.g001
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offspring reveal the minimum dispersal distances of planktonic
larvae. The genotypes of all adults were compared to the
genotypes of all recruits to identify putative parent-offspring pairs
that shared at least one allele at all loci. Putative pairs were
genotyped at 5 additional microsatellite loci and were re-analyzed,
from DNA extraction through scoring, at all 20 loci to minimize
the possibility of laboratory errors. Simulations required for the
calculation of Pr w j lð Þ, the probability of a pair being false given
the frequencies of shared alleles, were conducted as recommended
with 10,000 false pairs generated from over 1,000 null data sets

[14]. None of the identified parent-offspring pairs had missing
data, and over all samples, the amount of missing data equalled
0.6% (197 out of 33,150 scored alleles). For the calculation of false-
pair probabilities only, the missing data were coded as the most
common allele, which is a conservative approach. The possibility
of parent-offspring pairs actually being some other first-order
relative (i.e., full siblings) was eliminated by calculating the
probability of simulated full sibs sharing an allele at all 20 loci
(p,0.003). Simulated full sibs were created in KINGROUP [24]
with the observed yellow tang allele frequencies.

Figure 2. Patterns of larval connectivity in yellow tang off the Island of Hawai’i as determined by direct detection of four different
parent-offspring pairs. Sample reefs are indicated by triangles and circles, where triangles represent marine protected areas (MPAs) and circles
represent unprotected areas. The identified parents were sampled at Miloli’i and Punalu’u. Arrows point to the settlement site of the offspring. Solid
lines indicate the first unequivocal evidence of an MPA seeding unprotected sites.
doi:10.1371/journal.pone.0015715.g002
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Offspring aging
Estimating the spawning and settlement dates of the offspring

allowed us to examine oceanographic conditions from relevant
time periods. To estimate the dates that the documented offspring
were spawned, we calculated the age of the offspring on their
collection date using a species-specific linear growth equation
r2~0:79
! "

. This equation was obtained by comparing the total
length of 56 yellow tang recruits collected from the Island of
Hawai’i (size range 30 to 47 mm) to their nearest age (in days) as
determined by otolith growth rings (David J. Shafer, University of
Hawai’i, in preparation). The total lengths of the four identified
offspring ranged from 34 to 44 mm, well within the range of the
available data. We subtracted the ages of the offspring from the
collection date to determine the approximate date of spawning. To
calculate the approximate settlement date we added the mean
pelagic larval duration of yellow tang, 54 days [23], to the
spawning date. Additionally, we calculated that the four offspring
had lived on the reef for an average of 28 days before being
sampled.

Oceanography
We averaged measurements of sea surface height and

geostrophic velocity from satellite data over the larval dispersal
period of the documented offspring [25]. To construct a null
model of passive larval dispersal near the Island of Hawai’i, we
employed an ocean circulation model (the Hybrid Coordinate
Ocean Model or HYCOM [26]) to simulate ocean flows and track
virtual larvae (‘‘drifters’’) during the pelagic larval duration specific
to each identified yellow tang offspring. Virtual drifters were
released as close to the location of a natal site as possible, but

sufficiently far from land to prevent the drifters immediately
returning to shore. Initially 961 (31631) particles were evenly
distributed over rectangular patches of 0.03 degrees in width and
length located at each site. All drifters were released on estimated
spawning dates at depths of 1.5 and 30 meters below the sea
surface (i.e., two depths simulated per site). Particle positions were
sampled periodically until completion of the 54-day pelagic larval
duration. The drifters were permitted to take steps in a random
manner to simulate the effects of sub-grid scale processes that were
not resolved by the model. The size of these steps equates to a
diffusion coefficient of 10 m2s21.

Abundance estimates
We first employed site-specific density estimates of yellow tang

to calculate population sizes from reefs with documented parents
(see Text S1 in File S1 for details). We also calculated estimates of
the total population size for the entire island by using summed
habitat stratified density estimates within nine MPAs (see methods
in [27]). Density estimates for non-MPA areas were based on
mean values for areas open to fishing along the Kona-Kohala
coast [3]. East Hawaii estimates were based on average density
estimates for four sites. Total population size was calculated using
the sum of density estimates for each area multiplied by the total
reef area. Using these abundance data, we estimated the rates of
connectivity between sites where parents and offspring were
sampled. Because there is a large degree of uncertainty in these
estimates, we present and discuss these calculations only in the File
S1.

Results

We identified four parent-offspring pairs (Fig. 2), which is
remarkable given the approximately 54-day pelagic larval duration
and the large number of yellow tang around the Island of Hawai’i.
The study specific error-rate of 0.008 allowed for up to 2 loci to
mismatch [14], though all documented parent-offspring pairs
mismatched at either 0 or 1 locus (2 pairs each). All offspring were
assigned to a different parent and were unrelated (no alleles in
common). The probability of parent-offspring pairs sharing alleles
by chance was low, ranging from 0.001 to 0.027 (Table 2).
Importantly, this false pair probability represents the probability of
a parent-offspring pair being false after accounting for the
frequencies of shared alleles and all pair-wise adult-juvenile
comparisons.
Average observed heterozygosity was 0.764 with an average of

12 alleles per locus (range: 4 to 28). No loci were out of HWE at
more than one sample site, and 14 out of 18 sample sites did not

Table 2. Locations of parent-offspring pairs and
corresponding probabilities of sharing alleles by chance (false
pair probabilities), along-shore dispersal distances.

Sample reef
False pair
probability

Dispersal
distance

Parent Offspring Pr w j lð Þ (km)

Miloli’i Ho’okena 0.0038 15.4

Miloli’i Wawaloli 0.0013 64.9

Punalu’u Honokohau 0.0272 140.1

Punalu’u Anaeho’omalu 0.0109 184.2

doi:10.1371/journal.pone.0015715.t002

Table 1. Sample sizes and population genetics summary.

Sample site* Sample size K{ Pa{ HO
1 HE

1

Anaeho’omalu adults 49 9.24 6 0.718 0.796

Anaeho’omalu juveniles 82 9.03 3 0.753 0.779

Hilo adults 49 9.70 1 0.778 0.791

Hilo juveniles 42 9.57 1 0.779 0.798

Honokohau adults 73 9.32 2 0.763 0.776

Honokohau juveniles 109 9.21 5 0.767 0.799

Ho’okena adults 65 9.14 1 0.737 0.793

Ho’okena juveniles 68 9.44 4 0.787 0.806

Miloli’i adults 60 9.20 0 0.781 0.796

Miloli’i juveniles 67 9.38 1 0.754 0.809

Pohoiki adults 51 9.20 1 0.729 0.792

Pohoiki juveniles 18 9.47 1 0.811 0.796

Puako adults 66 9.21 1 0.791 0.794

Puako juveniles 48 9.26 0 0.758 0.795

Punalu’u adults 43 9.57 2 0.783 0.803

Punalu’u juveniles 49 9.38 1 0.789 0.798

Wawaloli adults 50 9.16 1 0.783 0.790

Wawaloli juveniles 83 9.26 2 0.747 0.792

*Age-size categories: juveniles ,149 mm TL, adults .150 mm TL (total length).
{Average allelic richness per sample, rarefied to 18 individuals.
{Number of private alleles.
1Observed (Ho) and expected (He) heterozygosities averaged across all loci.
Populations where one locus deviated from HWE after a Bonferroni correction
are indicated in bold.
doi:10.1371/journal.pone.0015715.t001
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have any loci out of HWE (Table 1). There was no evidence for
linkage disequilibrium among all pairs of loci. We could not reject
a null hypothesis of genetic homogeneity (panmixia) among all
sampled reefs (FST: 99% confidence interval =20.001–0.001;
pooled samples in Hardy-Weinberg Equilibrium). Furthermore,
we did not find any evidence for isolation-by-distance using
nearest along-shore distances (p.0.54; Figure S1). Adjusting for
marker polymorphism by calculating Hedrick’s GST [28] did not
change any of the above conclusions (e.g., more than half of the
pair-wise FST values were negative).
All identified offspring were found between 15 and 184

kilometers to the north of their parents, suggesting that ocean
currents played a substantial role in larval dispersal. Satellite
altimetry data revealed a large cyclonic meso-scale eddy that
created northward currents along the coast of the island (Fig. 3).
The eddy persisted from early April to mid-June 2006 before
moving slowly westward. Such eddies occur frequently in this
region in response to the prevailing northeasterly trade winds [29].
The eddies are surface-intensified but their influence can extend to
over 200 m in depth. The observed cyclonic eddy was reproduced
in the HYCOM model simulation. Virtual drifters released at the
ocean surface, initially moved northward along coastline, but
subsequently drifted to the northwest (Fig. 4a, c). Drifters released
at 30 m below sea level, were retained near the Island of Hawai’i
in greater numbers (Fig. 4b, d). The behavior of yellow tang larvae
is presently unknown, yet it seems likely that older larvae may take
active measures (e.g., change depth) to avoid being swept far

offshore [30]. Surgeonfish (tang) eggs are buoyant and pelagic
until hatching (,1–2 days) and young larvae are likely to be fairly
poor swimmers [31]. Late-stage surgeonfish larvae, however, have
been observed to occur in water as deep as 100 meters and to be
strong swimmers [32–36]. Thus, it is likely that yellow tang larvae
are initially passive and become progressively stronger swimmers
with age.
We conservatively estimated the total yellow tang population

size from the Island of Hawai’i to be 4.262.2 million individuals.
Using the adult abundance data estimated from each site (Table
S1 in File S1) we estimate that we sampled an average of only
0.06% (range: 0.02–0.2%) of the adults at reefs where parents were
identified. Thus, the large population size coupled with the small
proportion of individuals sampled strongly suggests that (1) yellow
tang have unequal reproductive success (i.e., if yellow tang had
equal reproductive success, then we would be very unlikely to
sample any parent-offspring pairs), and (2) the rates of larval
connectivity between sites must be ecologically significant.

Discussion

The new parentage approach demonstrated here provides a
means of directly documenting larval dispersal at higher resolution
than conventional indirect means. We detected dispersal distances
up to 184 km, which is a substantially greater distance than
previously detected using other direct methods [12]. Because we
could measure only the nearest along-shore distances, the actual

Figure 3. Sea surface height (cm, colors) as observed by satellites and the geostrophic velocity (cm/s, vectors) derived from satellite
altimetry and averaged over the larval dispersal period of the four documented offspring shown in Figure 2. The cyclonic eddy is
indicated by low sea surface heights and anti-clockwise rotation west of the Island of Hawai’i.
doi:10.1371/journal.pone.0015715.g003
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distances travelled by larvae may be considerably greater,
particularly if they were entrained in the near-shore eddy.
Importantly, our results do not support a pattern of high local
larval retention, which has been indicated by other parentage
studies [6–10]. One possible explanation is that previous studies
focused predominantly on anemonefishes and damselfishes
(Family: Pomacentridae). In our study, the small proportion of
sampled adults coupled with the observation that the tracked
larvae survived to become established juveniles, demonstrates high
rates of ecologically meaningful population connectivity among
these reefs around the Island of Hawai’i. These results provide new
insight on the ecologically important process of dispersal, namely
that (1) adult yellow tang populations are highly connected by
larval dispersal, and (2) along-shore distances do not appear to
limit yellow tang dispersal at the island-wide scale (see [37] for an
among-island study).

Given what is known about surgeonfish larval ecology, it is likely
that young yellow tang larvae were initially transported passively
by ocean currents [31] and may even have been transported and
entrained within the observed ocean eddy [38]. As the larvae grew
larger, they were likely able to change depth and eventually
become relatively strong swimmers [32–36]. We speculate that
active behavioural mechanisms prevented the larvae from
becoming permanently entrained in the observed eddy and
allowed them to successfully settle to suitable coral-reef habitat
[38]. Additionally, our results indicate that dispersal trajectories
may be predictable with oceanographic analyses (see also [39–41]).
Increases in the accuracy and precision of oceanographic methods
will come from accurate near-shore oceanographic modelling,
species-specific knowledge of larval behavior, and further empir-
ical validation. The continued refinement and integration of
genetic and oceanographic methods will lead to appropriate design

Figure 4. Dispersal of 1000 passive virtual drifters for 54 days – the pelagic larval duration of yellow tang – released from the two
reefs where parents were identified. Shown are passive dispersal of drifters released from Miloli’i on the date of spawning of a documented
offspring (26 April 2006) at (A) sea surface level and (B) 30 meters below the sea surface, as well as passive dispersal of drifters released from Punalu’u
at the date of spawning of another documented offspring (24 April 2006) at (C) sea surface level and (D) 30 meters below the sea surface. For drifters
released at sea level, initial post-spawning dispersal was northward, followed by subsequent dispersal to the northwest. Drifters released at 30 meters
below sea surface remained closer to the Island of Hawai’i and clustered near sites where offspring were identified. Note that yellow tang release
floating gametes near the ocean surface and that the behavior of older larvae is presently unknown.
doi:10.1371/journal.pone.0015715.g004
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decisions (e.g., size, spacing, location) that will allow for marine
reserves to better meet their goals [4,42].
Lack of unequivocal evidence for the hypothesized seeding

effect has long impeded acceptance of MPAs as useful tools for
marine fisheries management and conservation. Our observations
of larval connectivity provide the first direct evidence of marine
protected areas (MPAs) successfully seeding unprotected areas with
larval fish. In fact, the ‘unprotected’ site with identified parents
(Punalu’u) is functionally similar to an MPA because: (1) almost all
collection of yellow tang occurs on the Kohala-Kona coast, and (2)
this site is logistically difficult to access for collection purposes due
to high wave exposure. Thus, both reefs where parents were
identified were not substantially fished and they clearly seeded
both MPAs and reefs that are open to fishing.
In addition to demonstrating the seeding effect of MPAs,

documenting connectivity among marine populations has an
important social and economic role. The identification of
connectivity between distant reef fish populations on the Island
of Hawai’i demonstrates that human coastal communities are also
linked: management in one part of the ocean affects people who
use another part of the ocean. Understanding connections at all
levels is the foundation for truly effective ecosystem-based
management [43].

Supporting Information

Figure S1 Test of isolation-by-distance in yellow tang
collected from the Island of Hawai’i. Adult and juvenile
samples were treated as separate populations. Mantel tests were
run in GENEPOP with both normal and log-transformed

distances and with FST and FST/(1-FST). Tests could not reject
the null hypothesis of no isolation-by distance. At the within-island
scale, there is no increase in genetic differentiation between
populations as the distance between populations increases. The
dashed line represents a best-fit linear model.
(DOC)

File S1 Description of the methods employed to calcu-
late the abundance of yellow tang and estimates of
connectivity between sites where parents and offspring
were identified (Text S1). We also include a table of adult
abundance estimates (Table S1) and estimated connectivity
between sites (Table S2).
(DOC)
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Is climate change
imperiling pikas?
Virginia Gewin
Using records from 1898 to 2008,
researchers have charted the changing
distribution of the American pika
(Ochotona princeps) within the Great
Basin, the 200 000-square-mile region
between the Sierra Nevada and Rocky
Mountain ranges in the western US.
Their findings (Global Change Biol
2011; doi:10.1111/j.1365-2486.2010.
02389.x) indicate that four of 10 extir-
pations have occurred since 1999 and
that the species’ low-elevation bound-
ary in this ecoregion is moving upslope
at an average of 145 m per decade.
“This habitat has not changed much
physically for several decades; climate
appears to be the game changer –
responsible for quickening the pace
and altering drivers of extinction in
these areas after 1999”, according to
ecologist Erik Beever, now at the US
Geological Survey (Bozeman, MT).

Pikas, small mammals that live in
loose rock in mountainous areas
throughout western North America,
have become a poster child for cli-

mate change because of their sensi-
tivity to both extreme heat and cold.
Yet pikas were declined protection
under the Endangered Species Act
by the US Fish and Wildlife Service
in February 2010 because enough
suitable high-elevation habitat may
exist to ensure their survival. To bet-
ter understand the mechanisms dri-
ving local pika extinctions, Beever
and colleagues identified 25 sites in
the Great Basin with historical pika
records and revisited those sites,
documenting pika dynamics and
quantifying thermal stress.

Connie Millar, an ecologist with
the US Forest Service (Albany, CA),

agrees this is one of the most compre-
hensive studies designed to parse out
the impact of climate on pikas. But
while these sites offer interesting
comparisons over time, she says many
are atypical of “classic” pika habitat.
Though Millar points out that the
Great Basin is a marginal portion of
the pikas’ broad western North
American range, Beever maintains
the region is important to study pre-
cisely because it represents the mar-
gins of their distribution – areas that
can tell us the most about what fac-
tors determine a species’ niche.

Shaye Wolf, Climate Science
Director at the Center for Biological
Diversity (Tucson, AZ), says the find-
ings support their efforts to get the
pika added to the federal endangered
species list because of climate-change
threats.  However, Millar continues,
“I don’t think this is enough work to
reopen the case for the whole species,
but it does open up questions of via-
bility and vulnerability in Great Basin
populations – questions that should
be addressed by, for example, seeing if
the same trend holds true at a differ-
ent set of sites in the region”. !

Tiny larvae signal big
potential for MPAs
Pete Mooreside
Until recently, the long-distance dis-
persal of marine fish larvae from
spawning sites within marine pro-
tected areas (MPAs) to unprotected
regions had never been documented.
Considering the sea’s immensity rela-
tive to the minute size of larvae, it’s
easy to understand why evidence for
such connectivity would be hard to
come by. However, by relying on a
novel technique combining genetic
analyses and Bayesian statistics, sci-
entists identified a handful of par-
ent–offspring pairs of fish at protected
and unprotected coral reefs off the
Island of Hawaii (PLoS ONE 2010;
doi:10.1371/journal.pone.0015715).

Marine biologist Mark Christie
(Oregon State University, Corvallis,
OR) and colleagues studied popula-
tions of the herbivorous yellow tang

(Zebrasoma flavescens) – a charismatic
reef dweller that tends to stay close-
to-home after post-larval settlement,
usually not venturing farther than a
kilometer. The yellow tang also hap-
pens to have a price on its head; this
species alone is responsible for over
$1 million of the Big Island’s annual
commercial harvest of live fish des-
tined for the saltwater aquarium
trade. Given the potential for over-
collection, several fishing-prohibited
MPAs were established to help pro-
mote juvenile tang survival and thus
better ensure the fishery’s long-term
viability. But did reefs within MPAs
actually serve as population sources,
effectively “seeding” nearby regions –
protected or otherwise – with larvae?

After collecting fin tissue samples
from >1000 unique adults and juve-
niles at nine reefs around the island,
Christie and his team extracted
DNA, determined genotypes, and
performed probability analyses.

Subsequently, the nearly indisputable
confirmation of four parent–offspring
pairs, separated from one another by
distances ranging from 15 to 184 km,
was surprising in light of the study’s
relatively small sample size. “In any
large population, it’s challenging to
directly document dispersal events.
But to identify offspring that traveled
over 180 kilometers as miniscule lar-
vae, that was truly remarkable”, says
Christie. Furthermore, all offspring
were discovered to the north of their
parents, a finding that coincided with
satellite observations of an oceanic
gyre generating substantial northerly
currents. Overall, according to
Christie, the study “demonstrates that
MPAs can successfully seed areas at
substantial distances outside of their
borders, indicating that well-designed
MPA networks may be useful not
only for conservation purposes, but
also for successful management of
commercially exploited species”. !

The pikas’ (Ochotona princeps) distri-
bution is being altered as a result of climate
change.
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B Y  D A N I E L  C R E S S E Y

Facing a host of threats including fishery 
devastation and the destruction of coral 
reefs, conservationists have increasingly 

pinned their hopes on marine protected areas 
(MPAs). More than 5,000 of these sanctuaries, 
where fishing is controlled to limit its effect on 
biodiversity, have been set up, mainly in coastal 
zones. They range in size from less than 10,000 
square metres to the vast Phoenix Islands area, 
part of the Republic of Kiribati in the Pacific 
Ocean, which tops 400,000 square kilometres.

But, in the rush to safeguard marine  
ecosystems, there has been little scientific 
assessment of how to create a successful MPA. 
With a new wave of MPAs expected to be cre-
ated in deep-ocean regions in the next few 
years, scientists are eager to understand how 
factors such as size and siting can determine a 
protected area’s success or failure.

Tundi Agardy, an environmental consult-
ant based in Colrain, Massachusetts, is the 
lead author of a paper1 published in Marine 
Policy, which warns of a “blind faith” in the 
ability of MPAs to stem biodiversity loss. She 
told Nature that she can name only “a handful” 
of areas that actually work as advertised. Her 
paper identifies five possible shortcomings in 
MPAs: many are too small to be effective; they 
may simply drive fishing into other areas; they 
create an illusion of protection when none is 
actually occurring; many are poorly planned 
or managed; and they can fail all too easily 
because of environmental degradation of 
waters just outside the protected area. 

“I’d venture a guess that a majority of the 
world’s several thousand MPAs have one flaw 
or another relating to the five categories we 
describe,” says Agardy. For example, an MPA 
created to protect the vaquita (Phocoena sinus), 
a small porpoise found only in the Gulf of Cali-
fornia, actually missed a sizeable proportion of 
the species’ core range. The animal’s numbers 
have continued to decline and it is now the most 
endangered marine mammal in the world2.

“We still need a lot of knowledge to really 
understand how MPAs work exactly,” says  
Frederic Vandeperre, a marine biologist at 
the University of the Azores in Horta who last 
month published an analysis3 of seven southern 
European MPAs. The study showed that these 
MPAs can benefit fisheries in adjacent waters, 

but that the degree of the effect depends heavily 
on the size of the area and the quality of its man-
agement. Vandeperre says that each MPA needs 
a unique design, depending on its goals. For 
example, those that explicitly aim to safeguard 
fishing yields need to cover a larger area.

INTERNATIONAL WATERS
Conservationists should approach the design 
and siting of an MPA as an experiment, he 
says. “We should maybe create MPAs with 
different structures, different designs in a 
controlled way, to be really like an experi-
ment so we can figure out which elements are 
crucial.” This could include variations in size, 
location, manage ment strategy, monitoring 
and proximity to other MPAs.

Understanding the best way to create MPAs 
is about to become much more important. 
The 2002 World Summit on Sustainable 
Development set ambitious, internationally 
agreed targets to establish extensive networks 
of MPAs around the world by 2012. 

This requires the creation of more MPAs 
outside national boundaries in the high seas, 
where still less is known about how to make 
them work. “We have almost no experience of 
applying marine protected areas to high-seas 
ecosystems,” says Alex Rogers, a conservation 
ecologist at the University of Oxford, UK. “We 
don’t really know where to put them. We sus-
pect that simply by placing them in places that 

are particularly sensitive for species we may 
be able to derive a considerable management 
benefit, but it’s very, very early days at the 
moment.” Rogers is organizing a conference at 
the Zoological Society of London next month 
to discuss the design of high-seas protected 
areas, along with the complex legal and politi-
cal issues that surround them.

Still, some studies are starting to give clear 
pointers on the best way to position both coastal 
and high-seas MPAs. Last month, Mark Christie 
of Oregon State University in Corvallis and his 
team published an analysis4 showing that fish 
larvae — those of the yellow tang (Zebrasoma 
flavescens) — were successfully dispersing from 
an MPA to sites up to 180 kilometres away.

 “Now we are able to show the larvae can 
drift to sites outside the MPA and essentially 
reseed fish stocks significant distances away,” 
says Christie. The result means that by com-
bining information about ocean currents with 
the genetics of larvae captured from the seas, 
researchers can identify from where the larvae 
came. That could help pinpoint — and pro-
tect — the most important spawning areas for 
species such as Pacific bluefin tuna (Thunnus 
orientalis), says Rogers. 
1. Agardy, T., Notarbartolo di Sciara, G. & Christie, P. 

Mar. Policy 35, 226–232 (2011).
2. Dalton, R. Nature 465, 674–675 (2010).
3. Vandeperre, F. et al. Fish Fish. doi:10.1111/j.1467-

2979.2010.00401.x (2010).
4. Christie, R. et al. PLoS One 5, e15715 (2010).

C O N S E R VAT I O N

Plans for marine protection 
highlight science gap
Researchers are scrambling to understand how best to deploy conservation zones.

The reefs of the Phoenix Islands in Kiribati are part of the world’s largest marine protected area.
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