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A B S T R A C T

In lower Chesapeake Bay, a 172,235 ha marine protected area and corridor (MPAC) was
recently established to protect blue crab adult females either en route to or at the spawning
grounds during the reproductive period. The MPAC was justified due to a recent substantial
decline in spawning stock biomass. It was situated in waters deeper than 10 m throughout
the lower bay due to the high abundances of adult females in this zone, and it was an
expansion of a historical spawning sanctuary near the bay mouth to include northward ex-
tensions (upper and lower MPACs). We examined spatial dynamics of the blue crab spawning
stock in relation to the MPAC through analyses of trawl survey data (abundances of adult
females and egg-bearing females from 1989–1997 and 1995–1997, respectively) partitioned
by water depth, time (month and year), and spatial zone (upper MPAC, lower MPAC, MPAC
Historical Sanctuary) during the reproductive period (June–September). Adult female abun-
dance peaked at 6–14 m water depths. Consequently, nearly half of all adult females in the
lower bay were deeper than 10 m, and therefore protected by the MPAC during the repro-
ductive period, whereas the historical sanctuary protected about ⅓ that of the MPAC. All
MPAC segments were utilized by adult females at different times of the spawning season,
without consistent use of any particular segment. In contrast, abundance patterns of egg-
bearing females were consistent and did not differ by developmental stage of the eggs. Peak
abundances of egg-bearing females shifted from the northern to southern portions of the
MPAC as the spawning season progressed. Differences in distribution of adult females and
egg-bearing females demonstrated the importance of the expanded MPAC to the conservation
of the spawning stock, which requires an extensive area to cover seasonal and yearly alter-
ations in distribution. The expanded MPAC is much more effective than the historical sanc-
tuary at protecting a consistent fraction of the blue crab spawning stock over the full spawning
season and every year. Both the lower MPAC and historical sanctuary contained high abun-
dances of adult females and egg-bearing females, and these segments therefore potentially
function as corridors and spawning grounds. In contrast, whereas adult females were equally
abundant in all MPAC segments, egg-bearing females were rarely common in the upper
MPAC segment. Hence, the upper MPAC serves primarily as a corridor for females migrating
to spawn or hatch their egg masses in the lower MPAC and historical sanctuary. The MPAC
protects a major fraction of the spawning stock and spawning grounds both seasonally and
yearly, and it encompasses a dispersal corridor for adult females in the deeper waters of
Chesapeake Bay. The MPAC therefore serves as a foundation for long-term protection of the
blue crab spawning stock, and should be utilized concurrently with complementary manage-
ment measures to conserve the blue crab population in Chesapeake Bay. Furthermore, the
MPAC for the blue crab in Chesapeake Bay may serve as a model system for investigating
the value of marine protected areas for exploited marine populations with ontogenetically
disjunct stages in the life cycle that encompass diverse habitats.

A major postulated benefit of marine protected areas (e.g., sanctuaries) is that
they will enhance recruitment from the protected segment of the spawning stock
to the full population (Allison et al., 1998; Guenette et al., 1998). In addition,
protected dispersal corridors are potentially necessary complements to marine
protected areas when conserving migratory species (Rosenberg et al., 1997; Beier
and Noss, 1998). The utility of marine protected areas and corridors (MPACs)
remains generally untested and uncertain due to experimental and logistical dif-
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ficulties in demonstrating population-level impacts (Hobbs, 1992; Inglis and Un-
derwood, 1992; Simberloff et al., 1992; Allison et al., 1998; Lipcius et al., in
press), despite the likely value of MPACs for species such as the blue crab,
Callinectes sapidus, whose life cycle encompasses dispersal (e.g., spawning mi-
gration) via corridors (Rosenberg et al., 1997).

The blue crab, Callinectes sapidus, supports the world’s largest crab fishery
(Lipcius and Eggleston, 2000). The blue crab population in Chesapeake Bay is
the biggest throughout its range along the Atlantic and Gulf coasts of North
America (Williams, 1984; Rugolo et al., 1998), and fluctuates in abundance in-
terannually (Hines et al., 1990; Lipcius and Van Engel, 1990; Lipcius and Stock-
hausen, 2002). A detailed account of the life history and fisheries for the blue
crab in Chesapeake Bay is provided in Seitz et al. (2001). The relevant portion
of the life history for this study deals with the reproductive segment of the pop-
ulation. After a terminal maturity molt and mating in the oligohaline and meso-
haline segments of Chesapeake Bay and its tributaries, newly inseminated female
crabs either migrate to the lower Chesapeake Bay spawning grounds in summer,
or they migrate to the lower bay in fall, overwinter, and then spawn the following
year (Van Engel, 1958; Tagatz, 1968). Egg extrusion and larval release occur
from late spring through summer (Jones et al., 1990; Prager, 1996).

The blue crab in Chesapeake Bay has suffered a major reduction in the baywide
population (Lipcius et al., in press) and in the spawning stock, recruitment, larval
abundance, and size (Lipcius and Stockhausen, 2002), despite protection from
exploitation by a spawning sanctuary in the spawning grounds (Seitz et al., 2001)
and various catch or effort controls (Rugolo et al., 1998). A sustainable fraction
of the spawning stock (Miller and Houde, 1998; Rugolo et al., 1998) has not been
maintained (Seitz et al., 2001) to ensure maximal recruitment (Tang, 1985; Roths-
child, 1986; Lipcius and Van Engel, 1990; Lipcius and Stockhausen, in press)
under intense exploitation (Miller and Houde, 1998; Lipcius et al., 2002).

Consequently, an expansion of the spawning sanctuary and protection of a
deep-water dispersal corridor as an MPAC (Figs. 1, 2) was planned for the lower
bay where anoxia is not severe (R. Lipcius, unpubl.), because adult females con-
centrate in waters outside of the existing sanctuaries and deeper than 13 m (Fig.
2; Lipcius et al., 2001). These findings suggested that spawning activity outside
the existing sanctuary was substantial and that females used a part of the bay
mainstem as a dispersal corridor to the spawning grounds (Lipcius et al., 2001).
The MPAC (Figs. 1, 2) was adopted (27 June 2000, Virginia Marine Resources
Commission), and currently protects females in 172,235 ha of deep waters (mostly
.10 m depth) in the lower bay from 1 June–15 September.

The previous investigation (Lipcius et al., 2001) was limited in that it did not
examine abundance patterns of (i) egg-bearing females to determine probable
spawning areas and dispersal corridors in the MPAC, (ii) adult females in separate
segments of the MPAC to ascertain spatial variation in utilization of the MPAC,
(iii) adult females by depth to estimate the fraction of the spawning stock pro-
tected by the MPAC, and (iv) adult females by time during the reproductive period
to define seasonal utilization of the MPAC. The present study utilizes a different
data set that permits evaluation of the preceding issues and an estimate of the
probable value and function of the MPAC. Specifically, we measured spatial and
temporal variation in abundance of egg-bearing and adult females throughout the
MPAC during the reproductive period over several years to achieve the following
objectives:

1. Estimate the fraction of the spawning stock protected in the MPAC by mea-
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Figure 1. Chesapeake Bay marine protected area and corridor (MPAC, shaded area in bay), and trawl
survey sampling stations (dots). Progressing from north to south in the MPAC, the first horizontal line
splits the upper MPAC and lower MPAC. Near the southern end of the MPAC, the crooked boundary
separates the upper MPAC from the historical spawning sanctuary. The line at the northern end of
the MPAC defines the Maryland and Virginia border. The MPAC was expanded further in 2002; see
Appendix Fig. 1.

suring the abundance of adult females by depth, since the MPAC follows
the 10.7 m depth contour.

2. Assess utilization of the MPAC as a spawning area and as a dispersal
corridor by contrasting the distribution patterns of egg-bearing and adult
females as a function of location within the MPAC.

3. Assess interannual variation in utilization of different segments of the
MPAC, to test the hypothesis that the value of each segment of the MPAC
as a spawning sanctuary or corridor differs from year to year. For this we
contrasted annual abundance patterns of egg-bearing and adult females as a
function of location within the MPAC.

4. Assess variation in utilization of different segments of the MPAC over the
course of the reproductive period to test the hypothesis that utilization of
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Figure 2. Chesapeake Bay marine protected area and corridor (MPAC, shaded area) and 10.7 m
depth contour (based on NOAA depth charts), which generally bounds the MPAC. The line at the
northern end of the MPAC defines the Maryland and Virginia border.

the MPAC varies predictably in space and time during the reproductive
period. Abundance of egg-bearing and adult females as a function of month
and MPAC segment was quantified to test this hypothesis.

METHODS AND MATERIALS

Female blue crabs release larvae in the lower reaches of Chesapeake Bay each year from June
through September (Van Engel, 1958; Jones et al., 1990). Hence, we sampled adult females in the
spawning grounds of lower Chesapeake Bay from June through September during 1989–1997; egg-
bearing status was recorded during 1995–1997. Crabs were sampled with a stratified random trawl
survey, which minimizes spatial autocorrelation; each value from a single survey tow served as an
independent datum (i.e., number of adult females tow21). Average sample sizes in the spawning
grounds were 25 month21 (minimum 5 22) and 100 year21 (minimum 5 77); there were approximately
equal proportions in each of the MPAC segments (Fig. 1). Temporal autocorrelation was minimized
(i) monthly, because blue crab females have a residence time in the spawning grounds estimated at
2–4 wk (Prager, 1986; Seitz et al., 2001; J. R. McConaugha, pers. comm.), and (ii) yearly, because
most of the females in the spawning grounds are of a new year class (Van Engel, 1958; Lipcius et
al., in press). These circumstances reduced the probability of resampling females more than one month
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Table 1. Egg mass stages for the blue crab. Characteristics of egg mass stages were originally derived
for brachyuran crabs (Anderson, 1982) and applied to the blue crab (Jones et al., 1990). Egg yolk %
represents the volume of egg yolk as a percentage of the total egg volume. na 5 not applicable.

Stage Description
Egg yolk

%
Egg mass

color

1 No eggs present; no evidence of past spawning. na na
2 Early embryonic development; small embryonic disk; no

invagination.
90 orange

3 Intermediate embryonic development; invagination com-
pleted; eye pigmentation and organogenesis proceeding.

50 brown

4 Fully developed embryos; eyes completely pigmented. 10 black
5 No eggs present; evidence of previous spawning (e.g., rem-

nants of hatched eggs on pleopods).
na na

or one year, respectively, and should have minimized temporal autocorrelation. Bottom water depth
was recorded each tow.

The trawl survey has undergone minor changes in sampling protocol since 1979, which requires
gear conversion factors to standardize abundance values (Hata, 1997). In our case, data from July
1989–September 1990 was standardized. Analyses with uncorrected data yielded equivalent statistical
results; all analyses presented herein use the standardized data.

Abundance was analyzed in analysis of variance models as the log-transformed (log[10x 1 1]),
standardized number of adult females tow21 to normalize the data and reduce heterogeneity of variance
(Underwood, 1997). The data were transformed as 10x 1 1 to avoid negative characteristics in the
logarithms (Sokal and Rohlf, 1981). In all cases, variances were either homogeneous (P . 0.05,
Cochran’s C statistic) or the F-test in analyses of variance was rejected at an a level lower than that
used in the test for homogeneity of variance (Underwood, 1997). All analysis of variance models used
fixed factors (i.e., Year, Month, MPAC Segment, Egg Mass Stage). To examine differences between
factor levels, either for main effects with multiple levels or in comparisons when interaction effects
were significant, we used Student-Newman-Keuls a posteriori multiple comparison tests (Underwood,
1997).

For the analysis of abundance by water depth, we calculated the depth-specific and cumulative adult
female abundance by 1.5 m depth intervals from 0–32 m using yearly (i.e., June–September) sums of
adult females tow21. Values across depth strata were normalized annually to weight all years equally,
and expressed as the depth-specific or cumulative percent of adult female abundance by depth. Given
that the depth-specific means are expected to be distributed normally, a sigmoid function would best
describe the cumulative percent distribution (Sokal and Rohlf, 1981). The mean across all years was
therefore analyzed relative to depth with a sigmoid function using non-linear regression:

a
y 5

2(x2x )/b01 1 e

where y 5 mean cumulative percent of adult female abundance in depth interval x. The resulting
sigmoid curve was used to estimate the proportion of the spawning stock residing in the MPAC.

In 1995–1997, we also measured the incidence and developmental stages of egg masses on adult
females from the trawl survey samples. The egg masses were characterized according to documented
criteria for brachyuran crabs (Anderson, 1982), which have also been applied to the blue crab (Jones
et al., 1990). These criteria relate the color of the egg mass to specific stages in the development of
the embryos (Table 1). The number of females tow21 that were bearing eggs (i.e., egg stages 2–4,
Table 1) was used as the dependent variable in analysis of variance models. In these analyses, the
data were not transformed since variances were not heterogeneous (P . 0.05, Cochran’s C statistic).
As for abundance, we used fixed factors (i.e., Year, Month, MPAC Segment, Egg Mass Stage) in
analysis of variance models, and the Student-Newman-Keuls test in a posteriori multiple comparisons
(Underwood, 1997).

RESULTS

ABUNDANCE OF ADULT FEMALES BY DEPTH.—The depth-specific mean of adult
female abundance peaked at 6–14 m water depths (Fig. 3a). The sigmoid function
relating the mean cumulative percent of adult female abundance to water depth
(Fig. 3b) was:
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Table 2. Analysis of variance for log-transformed adult female abundance tow21. Year (9 levels:
1989–1997), Month (4 levels: June–September), and MPCA Segment (3 levels: upper MPCA, lower
MPCA, and historical sanctuary) served as fixed factors in the model.

Source of variation SS df MS F P

Year (Y)
Month (M)
MPCA Segment (S)
Y 3 M
Y 3 S
M 3 S
Y 3 M 3 S
Error
Total

113.25
16.38

6.67
24.81
16.91
13.07
36.75

420.24
651.55

8
3
2

24
16

6
48

809
916

14.16
5.46
3.34
1.03
1.06
2.18
0.77
0.52

27.25
10.51

6.42
1.99
2.04
4.19
1.47

0.0005
0.0005
0.002
0.003
0.009
0.0005
0.022

107.10
y 5

2[(x210.36)/22.67]1 1 e

with r2 5 0.997, P , 0.0001, df 5 2, 17. Approximately 50% of all adult females
sampled by the trawl survey in the lower bay was located deeper than 10 m, and
therefore contained within the boundaries of the MPAC (Fig. 3b).

ADULT FEMALE DISTRIBUTION.—Although adult females were broadly distrib-
uted throughout the MPAC and adjacent shallow waters, most of the high abun-
dances were in the MPAC (Fig. 4). Highest abundances were in the upper MPAC,
MPAC historical sanctuary, and near the southern border of the lower MPAC
(Fig. 4).

In the analysis of adult female abundance, there was a significant 3-way inter-
action effect of Year 3 Month 3 MPAC Segment, precluding singular conclusions
about the main effects. We hypothesized that the interaction effect might be due
to changing distribution patterns when female abundance was reduced signifi-
cantly in 1992 and thereafter (Lipcius and Stockhausen, 2002), so we repeated
the analysis separately for the 1989–1991 and 1992–1997 data sets. In both cases,
the 3-way interaction effect was not significant (ANOVA; 1989–1991: F 5 1.15,
df 5 12, 277, P 5 0.319; 1992–1997: F 5 1.22, df 5 30, 532, P 5 0.198).
However, the Month 3 MPAC Segment interaction effect was significant for both
time periods (ANOVA; 1989–1991: F 5 3.35, df 5 6, 12, P 5 0.003; 1992–
1997: F 5 4.33, df 5 6, 30, P , 0.0005), requiring examination of the effects
of MPAC segment within each month, using SNK tests. The Year 3 MPAC
Segment interaction effect was not significant (ANOVA; 1989–1991: F 5 1.35,
df 5 4, 277, P 5 0.252; 1992–1997: F 5 1.68, df 5 10, 532, P 5 0.081).

There were some consistent patterns in abundance between MPAC segments
by month (Fig. 5). In both 1989–1991 and 1992–1997, abundance during June
did not differ significantly by MPAC segment (SNK tests, P . 0.05; Fig. 5a, b).
In July of both time periods, abundance was significantly lower in the MPAC
historical sanctuary than in the lower MPAC (Fig. 5c, d; SNK tests, c: P , .05,
d: P , 0.01). In August, abundance did not differ by MPAC segment in 1989–
1991 (Fig. 5e; SNK test, P . 0.05), whereas in 1992–1997, abundance in the
lower MPAC was significantly higher than that in the upper MPAC (Fig. 5f; SNK
test, P , 0.01). During September of both time periods, abundance was signifi-
cantly higher in the upper MPAC than in the lower MPAC (Fig. 5g, h; SNK tests,
P , 0.05); in 1992–1997 abundance was also significantly higher in the historical
sanctuary than in the lower MPAC (Fig. 5h; SNK test, P , 0.05). Abundance
patterns by MPAC segment reflected substantial variation in their utilization over
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Figure 3. Depth-specific mean (a) and cumulative mean (b) percent of adult female abundance (nor-
malized by year) as a function of water depth in lower Chesapeake Bay. The depth boundary of the
marine protected area and corridor is indicated by the arrows between the two graphs, and by the
vertical dotted line at 10.7 m depth in graph b.

the reproductive period; all segments of the MPAC were utilized at different times
of the spawning season (Fig. 5).

EGG-BEARING FEMALE DISTRIBUTION.—Egg-bearing females were not as broadly
distributed as all adult females throughout the upper MPAC, lower MPAC, and
MPAC historical sanctuary and adjacent shallow habitats; highest abundances
occurred in the southern portion of the upper MPAC through the MPAC historical
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Figure 4. Distribution of adult female abundance throughout the marine protected area and corridor.
Circle sizes represent abundances that were 1 and 2 standard deviations greater than the normalized
mean in each year. See Figure 1 legend for further details, and the text for results of statistical analyses.

sanctuary (Fig. 6). Within the MPAC, highest abundances were evident in the
lower MPAC and MPAC historical sanctuary (Fig. 6).

In the analysis of egg-bearing female abundance, we first determined whether
there was a difference in the distribution of the different egg stages by MPAC
segment by using Egg Stage (Stage 2, Stages 3–4), Year, Month, and MPAC
Segment as fixed factors in a 4-way ANOVA model with the number of females
in each egg stage as the dependent variable. None of the factor effects involving
Egg Stage was significant (ANOVA; main effect: F 5 1.51, df 5 1, 526, P 5
0.219; interaction effects: all P . 0.713). We therefore lumped all the egg stages
and analyzed the remaining ANOVA models without Egg Stage as a factor.

In the 3-way ANOVA, neither the Year 3 Month 3 MPAC Segment (ANOVA,
F 5 1.23, df 5 12, 263, P 5 0.260) nor the Year 3 Month (ANOVA, F 5 1.33,
df 5 6, 263, P 5 0.243) interaction effects were significant. However, the Year
3 MPAC Segment (ANOVA, F 5 2.18, df 5 4, 263, P 5 0.072) and Month 3
MPAC Segment (ANOVA, F 5 2.40, df 5 6, 263, P 5 0.028) interaction effects
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Figure 5. Adult female abundance (log-transformed number tow21) as a function of segment of the
marine protected area and corridor (MPAC; upper MPAC, lower MPAC, MPAC Historical Sanctuary),
time period (1989–1991, 1992–1997), and month (June–September). Vertical bars depict 1 SE. MPAC
segments were compared statistically within each combination of time period and month using Student-
Neuman-Keuls multiple comparisons, with equal sample sizes for all comparisons within a time period
to equalize statistical power (Underwood, 1997). Non-significant comparisons (SNK tests, P . 0.05)
are not distinguished. Significant comparisons are signified by asterisks. See text for results of statis-
tical analyses.
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Figure 6. Distribution of egg-bearing female abundance throughout the marine protected area and
corridor. Circle sizes represent abundances that were 1 and 2 standard deviations greater than the
normalized mean in each year. See Figure 1 legend for further details, and text for results of statistical
analyses.

were significant. We thus examined the effects of MPAC segment on egg-bearing
female abundance within each level of month and year (Figs. 7, 8).

There was a consistent seasonal pattern in abundance of egg-bearing females
by MPAC segment (Fig. 7). In June, most egg-bearing females were in the upper
MPAC and lower MPAC (Fig. 7a), but the differences were not significant (SNK
test, P . 0.05). In July and August, abundance of egg-bearing females shifted to
the lower MPAC and MPAC historical sanctuary (Fig. 7b, c), with significantly
higher abundances in the lower MPAC than in the upper MPAC (SNK tests, b:
P , 0.05, c: P , 0.01). In September, egg-bearing females were significantly
more abundant in the MPAC historical sanctuary than in both the lower MPAC
and upper MPAC (Fig. 7d; SNK test, P , 0.05).

The distribution pattern of egg-bearing females across MPAC segments was
variable interannually (Fig. 8). In 1995, there was no significant difference in
abundance between the three segments (Fig. 8a; SNK test, P . 0.05). In contrast,
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Figure 7. Abundance of egg-bearing females as a function of region of the marine protected area
and corridor (MPAC; upper MPAC, lower MPAC, MPAC Historical Sanctuary) in each month, col-
lapsed across year. Vertical bars depict 1 SE. Non-significant comparisons (SNK tests, P . 0.05) are
not distinguished. Significant comparisons (SNK tests, P , 0.05) are indicated by asterisks. See text
for results of statistical analyses.

during 1996 abundance was significantly higher in the lower MPAC than in the
upper MPAC (Fig. 8b; SNK test, P , 0.05) and during 1997 abundance was
significantly higher in the MPAC historical sanctuary than in the upper MPAC
(Fig. 8c; SNK test, P , 0.05).

DISCUSSION

We investigated the spatial dynamics of the blue crab spawning stock within a
protected 172,235 ha marine protected area and corridor (MPAC) in lower Ches-
apeake Bay by partitioning the MPAC into upper, lower, and historical sanctuary
(i.e., bay mouth) segments. Next, we determined the distribution of adult females
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Figure 8. Abundance of egg-bearing females as a function of region of the marine protected area
and corridor (MPAC; upper MPAC, lower MPAC, MPAC Historical Sanctuary) in each year, collapsed
across month. Vertical bars depict 1 SE. Non-significant comparisons (SNK tests, P . 0.05) are not
distinguished. Significant comparisons (SNK tests, P , 0.05) are indicated by asterisks. See text for
results of statistical analyses.

as a function of water depth, specifically because the upper and lower MPAC are
bounded approximately by the 10.7 m depth contour (i.e., waters deeper than 10.7
m are protected from crabbing). Finally, we assessed the probable function and
effectiveness of each MPAC segment in conserving the blue crab spawning stock
by quantifying variation in the distribution and abundance of adult females and
egg-bearing females in the MPAC segments, both across years and as a function
of time during the reproductive period.

ESTIMATION OF THE FRACTION OF THE SPAWNING STOCK PROTECTED IN THE

MPAC.—Adult female abundance varied significantly as a function of water
depth, such that peak abundances occurred at 6–14 m depths. Consequently, near-
ly half of all adult females in the lower bay were deeper than 10 m, and therefore
protected by the MPAC during the reproductive period. Since peak abundance of
adult females coincided closely with the depth boundary of the MPAC, the depth
limits of the MPAC should be effective in protecting approximately 50% of the
blue crab spawning stock in Chesapeake Bay. However, the effectiveness of the
MPAC will be reduced if females in the MPAC do not remain resident in the
MPAC before spawning (i.e., move to exploited areas), or if heavy exploitation
outside the MPAC greatly reduces their numbers before entry of mature females
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into the MPAC. For instance, mature and egg-bearing females are exploited for
a short time before and after the effective period of the MPAC in spring and fall,
respectively. In other exploited marine species, such displaced fishing effort has
limited the benefits of marine protected areas (Lipcius et al., in press), and may
reduce the effectiveness of the MPAC in protecting the blue crab spawning stock.

ASSESSMENT OF INTERANNUAL AND MONTHLY VARIATION IN UTILIZATION OF

MPAC SEGMENTS.—Adult females were distributed throughout the upper, lower,
and historical sanctuary MPAC segments, as well as adjacent shallow waters, but
with highest abundances in the MPAC. Distribution patterns of adult females in
the MPAC segments differed in the two time periods (i.e., 1989–1991 and 1992–
1997) between which spawning stock abundance declined over 80% (Lipcius and
Stockhausen, 2002). In both 1989–1991 and 1992–1997, abundance during June
(early in the reproductive period) was equivalent across MPAC segments. From
July through September, abundance was not consistently higher or lower in any
one of the MPAC segments. Abundance patterns by MPAC segment reflected
substantial variation in their utilization over the reproductive period, without con-
sistent use of any particular segment; all segments of the MPAC were utilized at
different times of the spawning season and during the two time periods (1989–
1991 and 1992–1997). Moreover, the historical sanctuary at times had signifi-
cantly lower abundances than the other MPAC segments, reinforcing the impor-
tance of an expanded MPAC.

Egg-bearing females were not as broadly distributed as all adult females
throughout the MPAC segments and adjacent shallow habitats; highest abundanc-
es occurred in the southern portion of the upper MPAC through the historical
sanctuary. Abundances of egg-bearing females followed a much more consistent
and generalized pattern through time than that of adult females. Highest abun-
dances of egg-bearing females typically shifted from the northern to southern
portions of the MPAC as the spawning season progressed. In June, most egg-
bearing females were in the upper and lower MPAC segments. In July and August,
the distribution of egg-bearing females shifted to the lower MPAC and historical
sanctuary. By September, egg-bearing females were abundant only in the histor-
ical sanctuary. Surprisingly, this pattern held irrespective of the developmental
stage of the eggs (i.e., early- or late-stage egg masses). The consistency in the
seasonal shift in spatial distribution of egg-bearing females demonstrates the im-
portance of the expanded MPAC to the conservation of the spawning stock, which
by virtue of its spatial variation requires an extensive area to cover the seasonal
alterations in abundance of egg-bearing females. For instance, whereas the MPAC
protects egg-bearing females throughout the spawning season, the historical sanc-
tuary only protected egg-bearing females during the latter half of the spawning
season. Hence, the expanded MPAC is much more effective than the historical
sanctuary at protecting a consistent fraction of the blue crab spawning stock over
the full spawning season and across years.

ASSESSMENT OF UTILIZATION OF THE MPAC AS A SPAWNING AREA AND AS A

DISPERSAL CORRIDOR.—We compared the distributions of adult females (i.e., fe-
males with or without eggs) and egg-bearing females to assess the functions of
each of the MPAC segments. Both the lower MPAC and historical sanctuary
contained high abundances of adult females and egg-bearing females, and these
therefore potentially function as corridors and spawning grounds. In contrast,
whereas adult females were equally abundant in all MPAC segments, egg-bearing
females were rarely common in the upper MPAC segment. We therefore conclude
that the upper MPAC serves primarily as a corridor for females migrating to
spawn or hatch their egg masses in the lower MPAC and historical sanctuary.
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Further investigations of the migration pathways and spawning behavior of blue
crab females are required to discern the exact functions of each of the MPAC
segments.

We conclude that (i) the blue crab spawning stock shifts spatially both during
the reproductive period and between years; (ii) the historical spawning sanctuary
did not protect a consistent fraction of the spawning stock, whereas the expanded
MPAC protects a major fraction of the spawning stock both seasonally and yearly;
and (iii) the expanded MPAC encompasses a dispersal corridor for adult females
as well as most of the spawning grounds in the deeper waters of Chesapeake Bay.
The MPAC therefore serves as a foundation for long-term protection of the blue
crab spawning stock in Chesapeake Bay, and should be utilized concurrently with
complementary conservation measures, such as effort controls, to prevent dis-
placed fishing effort from negating the benefits of the marine protected area and
corridor.

APPLICABILITY TO CONSERVATION OF EXPLOITED MARINE POPULATIONS.—Popu-
lations such as the blue crab in Chesapeake Bay, whose benthic life-history stages
are disjunct (e.g., juveniles in shallow nurseries and adults in deeper waters),
require protection not only in the spawning grounds, but also in dispersal corridors
that link nursery habitats with the spawning grounds (Lipcius et al., in press). As
with the displaced fishing effort that plagues migratory populations (Lipcius et
al., in press), redirected fishing effort towards either earlier or other exploitable
stages in the life history will likely negate the benefits of marine protected areas
for these ontogenetically disjunct populations. For instance, the blue crab life
history in Chesapeake Bay involves reinvasion of shallow-water nurseries by pos-
tlarvae from the continental shelf, followed by growth and dispersal throughout
the tributaries and upper Bay. Mating takes place in the tributaries and in some
upper portions of the Bay, after which mature females migrate to the Bay’s mouth
to spawn their egg masses and hatch their larvae in the higher salinities of the
lower Bay. Hence, juveniles, subadult females, and mature males are distributed
throughout the Bay, predominantly in shallow habitats where they are exploitable.
Mature females must traverse the fishing gauntlet in the tributaries and bay main-
stem as they migrate via shallow waters or deep-water dispersal corridors to the
lower bay MPAC. Thus, protection from exploitation within the spawning grounds
alone is not sufficient. Similarly, other types of marine protected areas are inef-
fective when they do not protect all exploitable stages in the life history prior to
their maturation into the spawning stock (Allison et al., 1998; Lipcius et al., in
press). The current MPAC protects a significant fraction of the spawning stock,
and therefore serves as the foundation for future expansion of the MPAC into
shallow habitats. In addition, the MPAC for the blue crab in Chesapeake Bay
may also serve as a model system for evaluating the utility of marine protected
areas for ontogenetically disjunct marine populations.
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Appendix Figure 1. The MPAC was expanded in 2002 as shown to an area of 240,376 ha.


