Name: ___KEY___________           Email: __________________   MARS 6400 Spring 2019

Homework Set #2 (Points for grabs:  25  – Total HW value:  5% of class grade)

Email to khyrenba@gmail.com with email subject “MARS6400 – Hw#2” By end of Feb 16th.   
1) You will use the following dataset to investigate the trend in a hypothetical protected species, censused every 10 years.  The data are included in the enclosed excel sheet (Question #1).
	year
	number
	ln(number)

	1940
	68
	4.220

	1950
	40
	3.689

	1960
	30
	3.401

	1970
	27
	3.296

	1980
	22
	3.091

	1990
	17
	2.833

	2000
	15
	2.708


Your task is to determine the intrinsic rate of the decrease in this population ( r) using the continuous population growth model (Nt = No e rt).  Hint:  You will use a simple linear regression (in Excel) to calculate the parameter (r) mean value (point estimate) and the 95% intervals.  Use only three significant digits for your estimates (e.g., 0.123).
· Show all of your work, including how you transform the exponential population growth model into a linear equation, and explicitly relate the requested parameters to the output from the Excel regression output.  

· Answer these questions:

a. Is the rate of decrease ( r ) significantly different from zero?  Explain your answer.  Include a plot of the best-fit regression and the regression results.
The key to get this problem right is to convert the exponential equation into a line                       (y = a + bx).  This requires taking the natural log, of both sides of the equation:

Ln (Nt) = Ln(No) + rt  Ln(e)  (note:  Ln(e) = 1)
Ln (Nt) = Ln(No) + rt 

y           = a            + bx
Using the data in the “question 1” excel sheet, you can run the linear regression of Ln(N) (dependent variable) as a function of time (the independent variable).  When you do that, this is the result:

	SUMMARY OUTPUT
	
	
	
	
	

	
	
	
	
	
	
	

	Regression Statistics
	
	
	
	
	

	Multiple R
	0.975
	
	
	
	
	

	R Square
	0.950
	
	
	
	
	

	Adj. R Square
	0.940
	
	
	
	
	

	Standard Error
	0.127
	
	
	
	
	

	Observations
	7
	
	
	
	
	

	
	
	
	
	
	
	

	ANOVA
	
	
	
	
	
	

	 
	df
	SS
	MS
	F
	Significance F
	

	Regression
	1
	1.535
	1.535
	94.457
	0.0002
	

	Residual
	5
	0.081
	0.016
	
	
	

	Total
	6
	1.616
	 
	 
	 
	

	
	
	
	
	
	
	

	 
	Coefficients
	Standard Error
	t Stat
	P-value
	Lower 95%
	Upper 95%

	Intercept
	49.445
	4.746
	10.418
	0.000
	37.244
	61.645

	Time (year)
	-0.023
	0.002
	-9.719
	0.000
	-0.030
	-0.017


The regression analysis yields these parameter estimates: 

· Slope ( r ) = -0.023 (95% CI = -0.030 to -0.017)  Population is declining, the slope CI does not overlap with a slope of 0.  Also, note that the p value for the slope is statistically significant at 0.0002 (p < 0.05). 

b. Using the three estimates you calculated for r (point estimate, upper 95% CI, lower 95% confidence interval), plug the values into the exponential population growth equation to calculate the year this population will go extinct (Hint:  when N = 1, the population will be doomed, since two individuals are needed to reproduce).

To calculate the year this population will go extinct (Nt = 1), we need to re-arrange the equation as follows:

(Nt)  = No e rt
1  = 68 e rt
Ln (1/68) = t *r
- 4.219 / r = t

	scenario
	ln(1/68)
	r
	time
	year

	Point estimate
	-4.219
	-0.023
	183.434
	2123

	upper 95% CI
	-4.219
	-0.017
	248.176
	2188

	lower 95% CI
	-4.219
	-0.030
	140.633
	2081


c. Briefly discuss how you could use this range of estimates (the 95% CI) to build a safety factor into your management decisions (Hint: Check out Taylor and Wade paper).  
Taylor and Wade discuss the use of a range of estimates (e.g., the 95% CI) rather than the “best” estimate (the mean or point estimate) to account for the variability in the observed data and trends.  Thus, we would use the lower 95% CI to assess the earliest possible date of extinction.  This would identify the worst possible case – given the uncertainty in the data-  and would allow for the safest possible management actions to avert extinction by the earliest date predicted by the model. 
2 a) To explore the issue of random variation in the environment (stochasticity), you will use the discrete population growth equation [ N(t+1) = N(t) * Lambda ] to model the consequences of “good” years (Lambda = 1.2) and “bad” years (Lambda = 0.8) using the excel enclosed excel sheet (Question #2). Imagine that “good” and “bad” years occur randomly and with equal probability (p_good = p_bad = 0.5).  If you start with a population of 1000 individuals at N(1), predict how large the population will be after 4 years (i.e., Calculate N(5)).  Repeat this process 10 times (number of runs = 10), and provide the following:

NOTE:  Because this model includes stochasticity, your specific results may vary from mine.  Thus, I will explain the general patterns that we would expect, rather than providing a unique and definite answer.  
The key issue is that even though p(good) = p(bad) = 0.5, when we simulate the probabilities, we can get deviations from these ideal behaviors.  For instance, some runs will have four “good” years in a row, or only one “bad” year.  On average, we expect half of the years to be “good” and “bad”, but there are deviations.  For instance, in my example, the 10 runs varied from 614.400 (3 “bad” years) to 1382.400 (three “good” years).  The realized Lambda values vary accordingly, but the mean (0.973) is below parity (1).   
- frequency distribution (histogram) of the expected population sizes
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Note the spread of values about the expected population growth rate.

Given p(good) = p (bad) = 0.5, we would expect the population to grow at
Expected_Realized_Lambda = [(1.2) * (0.8) * (1.2) * (0.8) ] ^ 1/4  = 0.979
Expected_Population_Size = 1000 * 0.979 *0.979 * 0.979 * 0.979 = 922
- report the following statistics for the population sizes at time 5:  mean, SD, CV, min, max. 
	
	Pop Size N(5)

	mean
	936.960

	min
	614.400

	max
	1382.400

	std
	335.350

	cv
	35.791


- frequency distribution (histogram) of the realized population growth rates (lambda)
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- report the following statistics for the realized population growth:  mean, SD, CV, min, max. 

	
	Realized Lambda

	mean
	0.973

	min
	0.885

	max
	1.084

	std
	0.087

	cv
	8.933


2 b) Repeat this entire process with the same probabilities (p_good = p_bad = 0.5), but now use different growth rates for “good” years (Lambda = 1.5) and “bad” years (Lambda = 0.5).  Enter the new lambdas in the excel sheet and report the same statistics and figures.
When we change Lambda_good = 1.5 and Lambda_bad = 0.5, we expect two results: 

· decreased mean realized_lambda and mean population size at N(5).  When you calculate the expected realized_Lambda with the new parameters, you obtain a smaller value than for scenario 1.  
Given p(good) = p (bad) = 0.5, we would expect the population to grow at

Expected_Realized_Lambda = [(1.5) * (0.5) * (1.5) * (0.5) ] ^ 1/4  = 0.866

Expected_Population_Size = 1000 * 0.866 *0.866 * 0.866 * 0.866 = 562
· The distribution of realized_Lambda and N(5) is more variable in scenario 2 because the populations grow or decrease faster in this scenario with a larger Lambda_good and a smaller Lambda_bad.  Check the CVs for the two examples and it would be larger in scenario 2.   The distributions will thus show a larger range of values (higher maximums, lower minimums) for scenario 2 than for scenario 1.
	
	N(5)
	Realized Lambda

	mean
	1112.500
	0.906

	min
	62.500
	0.500

	max
	5062.500
	1.500

	std
	1501.388
	0.290

	cv
	134.956
	31.998


2 c) Finally, assume that now good and bad years alternate each other for ever.  What would be the realized growth rate (lambda) for the four scenarios you have calculated above:  (Lambda for a good year = 1.75, 1.5, 1.25, 1)?  Hint:  You do not need to make all of these calculations, use algebra to get the right answer.  Show me your work.

	Lambda_good
	Lambda_bad
	Calculation
	Realized_Lambda

	1
	1
	 = (1*1*1*1) ^ (¼)
	1.000

	1.25
	0.75
	 = (1.25*0.75*1.25*0.75) ^ (¼)
	0.968

	1.5
	0.5
	 = (1.5*0.5*1.5*0.5) ^ (¼)
	0.866

	1.75
	0.25
	 = (1.75*0.25*1.75*0.25) ^ (¼)
	0.661


2 d) Create two plots of the “modeled” mean and the CV of the realized population growth (y axis) as a function of the “calculated” realized lambda values from question 2c (x axis).  (Hint:  enter the new lambda values into the excel sheet and copy and paste the output to get the realized lambda values for the missing scenarios).  Discuss how the “calculated” and “modeled” mean realized population growth estimates compare to each other.  What is happening as the environmental variability increases in this scenario?   
Note:  the Lambda = 1 scenario is trivial.  The population does not grow or decrease.
For the other scenarios, as Lambda_good increases from 1 to 1.75 (and Lambda_bad decreases accordingly from 1 to 0.25), we see that the modeled mean lambda values decline, accordingly.  Depending on the specific stochastic results of your runs, the modeled point estimates will be above or below the calculated expectations.  However, the result is not consistent:  sometimes the model results are on average better or worse… it depends on the scenario.  

However, what is a consistent result is the increase in the variability of the model results with the increase in Lambda_good.  This is evident in the larger values of the modeled Lambda_CV, as we change the Lambda_good parameters from 1 to 1.75.  
	
	Modelled
	
	
	Calculated

	Lambda_good
	Lambda_mean
	Lambda_cv
	
	Lambda_realized

	1
	1
	0
	
	1.000

	1.25
	0.9627
	12.312
	
	0.968

	1.5
	0.905
	31.997
	
	0.866

	1.75
	0.734
	34.882
	
	0.661
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The reason for the smaller realized_Lambda as we increase Lambda_good and decrease Lambda_bad may seem counterintuitive, since the arithmetic means of the pairs of possible lambda values are always 1:  (1 & 1), (1.25 and 0.75), (1.5 & 0.5), (1.75 & 0.25).  However, the key is that population growth in this model is a multiplicative process - not an additive process – so, we need to calculate the geometric mean, not the arithmetic mean.  To check that you get it, can you calculate how large Lambda_bad would have to be in this example to maintain a realized_Lambda of 1, as Lambda_good increases from 1 to 1.75? (hint:  imagine we alternate from good and bad years sequentially for ever… like in this example).
The reason for the larger CV is that the population undergoes larger proportional consecutive increases / decreases, as we increase Lambda_good and decrease Lambda_bad.
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