Political polls are dutifully reported with a margin of error, which gives us a clue that they contain some uncertainty. Most of the time when an economic prediction is presented, however, only a single number is mentioned. The economy will create 150,000 jobs next month. GDP will grow by 3 percent next year. Oil will rise to \$120 per barrel. This creates the perception that these forecasts are amazingly accurate. Headlines expressing surprise at any minor deviation from the prediction are common in coverage of the economy: Unexpected Jump in Unemployment Rate to 9.2% Stings Markets —Denver Post, July 9, 2011¹ If you read the fine print of that article, you'd discover that the "unexpected" result was that the unemployment rate had come in at 9.2 percent—rather than 9.1 percent² as economists had forecasted. If a one-tenth of a percentage point error is enough to make headlines, it seems like these forecasts must ordinarily be very reliable. Instead, economic forecasts are blunt instruments at best, rarely being able to anticipate economic turning points more than a few months in advance. Fairly often, in fact, these forecasts have failed to "predict" recessions *even once they were already under way*: a majority of economists did not think we were in one when the three most recent recessions, in 1990, 2001, and 2007, were later determined to have begun.³ Forecasting something as large and complex as the American economy is a very challenging task. The gap between how well these forecasts actually do and how well they are perceived to do is substantial. Some economic forecasters wouldn't want you to know that. Like forecasters in most other disciplines, they see uncertainty as the enemy—something that threatens their reputation. They don't estimate it accurately, making assumptions that lower the amount of uncertainty in their forecast models but that don't improve their predictions in the real world. This tends to leave us less prepared when a deluge hits. # The Importance of Communicating Uncertainty In April 1997, the Red River of the North flooded Grand Forks, North Dakota, overtopping the town's levees and spilling more than two miles into the city.* Although there was no loss of life, nearly all of the city's 50,000 residents had to be evacuated, cleanup costs ran into the billions of dollars, and 75 percent of the city's homes were damaged or destroyed. Unlike a hurricane or an earthquake, the Grand Forks flood may have been a preventable disaster. The city's floodwalls could have been reinforced using sandbags.⁷ It might also have been possible to divert the overflow into depopulated areas—into farmland instead of schools, churches, and homes. Residents of Grand Forks had been aware of the flood threat for months. Snowfall had been especially heavy in the Great Plains that winter, and the ^{*} The political scientist Roger Pielke Jr., who was brought in to consult on the disaster, alerted me to this story. National Weather Service, anticipating runoff as the snow melted, had predicted the waters of the Red River would crest to forty-nine feet, close to the all-time record. There was just one small problem. The levees in Grand Forks had been built to handle a flood of fifty-one feet. Even a small miss in the forty-nine-foot prediction could prove catastrophic. In fact, the river crested to fifty-four feet. The Weather Service's forecast hadn't been perfect by any means, but a five-foot miss, two months in advance of a flood, is pretty reasonable—about as well as these predictions had done on average historically. The margin of error on the Weather Service's forecast—based on how well their flood forecasts had done in the past—was about plus or minus nine feet. That implied about a 35 percent chance of the levees being overtopped.⁸ FIGURE 6-1: FLOOD PREDICTION WITH MARGIN OF ERROR9 The problem is that the Weather Service had explicitly avoided communicating the uncertainty in their forecast to the public, emphasizing only the forty-nine-foot prediction. The forecasters later told researchers that they were afraid the public might lose confidence in the forecast if they had conveyed any uncertainty in the outlook. Instead, of course, it would have made the public much better prepared—and possibly able to prevent the flooding by reinforcing the levees or diverting the river flow. Left to their own devices, many residents became convinced they didn't have anything to worry about. (Very few of them bought flood insurance.¹⁰) A prediction of a forty-nine-foot crest in the river, expressed without any reservation, seemed to imply that the flood would hit forty-nine feet exactly; the fifty-one-foot levees would be just enough to keep them safe. Some residents even interpreted the forecast of forty-nine feet as representing the *maximum* possible extent of the flood.¹¹ An oft-told joke: a statistician drowned crossing a river that was only three feet deep *on average*. On average, the flood might be forty-nine feet in the Weather Service's forecast model, but just a little bit higher and the town would be inundated. The National Weather Service has since come to recognize the importance of communicating the uncertainty in their forecasts accurately and honestly to the public, as we saw in chapter 4. But this sort of attitude is rare among other kinds of forecasters, especially when they predict the course of the economy. ## Are Economists Rational? Now consider what happened in November 2007. It was just one month before the Great Recession officially began. There were already clear signs of trouble in the housing market: foreclosures had doubled, 12 and the mortgage lender Countrywide was on the verge of bankruptcy. 13 There were equally ominous signs in credit markets. 14 Economists in the Survey of Professional Forecasters, a quarterly poll put out by the Federal Reserve Bank of Philadelphia, nevertheless foresaw a recession as relatively unlikely. Instead, they expected the economy to grow at a just slightly below average rate of 2.4 percent in 2008. And they thought there was almost no chance of a recession as severe as the one that actually unfolded. The Survey of Professional Forecasters is unique in that it asks economists to explicitly indicate a range of outcomes for where they see the economy headed. As I have emphasized throughout this book, a probabilistic consideration of outcomes is an essential part of a scientific forecast. If I asked you to forecast the total that will be produced when you roll a pair of six-sided dice, the correct answer is not any single number but an enumeration of possible outcomes and their respective probabilities, as in figure 6-2. Although you will roll 7 more often than any other number, it is not intrinsically any more or any less consistent with your forecast than a roll of 2 or 12, provided that each number comes up in accordance with the probability you assign it over the long run. FIGURE 6-2: FORECASTED PROBABILITY DISTRIBUTION: SUM OF PAIR OF DICE The economists in the Survey of Professional Forecasters are asked to do something similar when they forecast GDP and other variables—estimating, for instance, the probability that GDP might come in at between 2 percent and 3 percent, or between 3 percent and 4 percent. This is what their forecast for GDP looked like in November 2007 (figure 6-3): As I mentioned, the economists in this survey thought that GDP would end up at about 2.4 percent in 2008, slightly below its long-term trend. This was a very bad forecast: GDP actually *shrank* by 3.3 percent once the financial crisis hit. What may be worse is that the economists were extremely confident in their bad prediction. They assigned only a 3 percent chance to the economy's shrinking by any margin over the whole of 2008. And they gave it only about a 1-in-500 chance of shrinking by at least 2 percent, as it did. Indeed, economists have for a long time been much too confident in their ability to predict the direction of the economy. In figure 6-4, I've plotted the forecasts of GDP growth from the Survey of Professional Forecasters for the eighteen years between 1993 and 2010.¹⁷ The bars in the chart represent the 90 percent prediction intervals as stated by the economists. A prediction interval is a range of the most likely outcomes that a forecast provides for, much like the margin of error in a poll. A 90 percent prediction interval, for instance, is supposed to cover 90 percent of the possible real-world outcomes, leaving only the 10 percent of outlying cases at the tail ends of the distribution. If the economists' forecasts were as accurate as they claimed, we'd expect the actual value for GDP to fall within their prediction interval nine times out of ten, or all but about twice in eighteen years. FIGURE 6-4: GDP FORECASTS: 90 PERCENT PREDICTION INTERVALS AGAINST ACTUAL RESULTS In fact, the actual value for GDP fell outside the economists' prediction interval six times in eighteen years, or fully one-third of the time. Another study, 18 which ran these numbers back to the beginnings of the Survey of Professional Forecasters in 1968, found even worse results: the actual figure for GDP fell outside the prediction interval almost *half* the time. There is almost no chance 19 that the economists have simply been unlucky; they fundamentally overstate the reliability of their predictions. In reality, when a group of economists give you their GDP forecast, the true 90 percent prediction interval—based on how these forecasts have actually performed²⁰ and not on how accurate the economists claim them to be—spans about 6.4 points of GDP (equivalent to a margin of error of plus or minus 3.2 percent).* When you hear on the news that GDP will grow by 2.5 percent next year, that means it could quite easily grow at a spectacular rate of 5.7 percent instead. Or it could fall by 0.7 percent—a fairly serious recession. Economists haven't been able to do any better than that, and there isn't much evidence that their forecasts are improving. The old joke about economists' having called nine out of the last six recessions correctly has some truth to it; one actual statistic is that in the 1990s, economists predicted only 2 of the 60 recessions around the world a year ahead of time.²¹ Economists aren't unique in this regard. Results like these are the rule; experts either aren't very good at providing an honest description of the uncertainty in their forecasts, or they aren't very interested in doing so. This property of overconfident predictions has been identified in many other fields, including medical research, political science, finance, and psychology. It seems to apply both when we use our judgment to make a forecast (as Phil Tetlock's political scientists did) and when we use a statistical model to do so (as in the case of the failed earthquake forecasts that I described in chapter 5). But economists, perhaps, have fewer excuses than those in other professions for making these mistakes. For one thing, their predictions have not just been overconfident but also quite poor in a real-world sense, often missing the actual GDP figure by a very large and economically meaningful margin. For another, organized efforts to predict variables like GDP have been around for many years, dating back to the Livingston Survey in 1946, and these results are well-documented and freely available. Getting feedback about how well our predictions have done is one way—perhaps the essential way—to improve them. Economic forecasters get more feedback than people in most other professions, but they haven't chosen to correct for their bias toward overconfidence. Isn't economics supposed to be the field that studies the rationality of human behavior? Sure, you might expect someone in another field—an anthropologist, say—to show bias when he makes a forecast. But not an economist. ^{*} The 95 percent prediction interval—the standard that political polls use—is even larger: 9.1 percentage points, equivalent to a margin of error of plus or minus 4.6 points. Actually, however, that may be part of the problem. Economists understand a lot about rationality—which means they also understand a lot about how our incentives work. If they're making biased forecasts, perhaps this is a sign that they don't have much incentive to make good ones. # "Nobody Has a Clue" Given the track record of their forecasts, there was one type of economist I was most inclined to seek out—an economist who would be honest about how difficult his job is and how easily his forecast might turn out to be wrong. I was able to find one: Jan Hatzius, the chief economist at Goldman Sachs. Hatzius can at least claim to have been more reliable than his competitors in recent years. In November 2007, a time when most economists still thought a recession of any kind to be unlikely, Hatzius penned a provocative memo entitled "Leveraged Losses: Why Mortgage Defaults Matter." It warned of a scenario in which millions of homeowners could default on their mortgages and trigger a domino effect on credit and financial markets, producing trillions of dollars in losses and a potentially very severe recession—pretty much exactly the scenario that unfolded. Hatzius and his team were also quick to discount the possibility of a miraculous postcrisis recovery. In February 2009, a month after the stimulus package had been passed and the White House had claimed it would reduce unemployment to 7.8 percent by the end of 2009, Hatzius projected unemployment to rise to 9.5 percent ²² (quite close to the actual figure of 9.9 percent). Hatzius, a mellow to the point of melancholy German who became Goldman Sachs's chief economist in 2005,²³ eight years after starting at the firm, draws respect even from those who take a skeptical view of the big banks. "[Jan is] very good," Paul Krugman told me. "I hope that Lloyd Blankfein's malevolence won't spill over to Jan and his people." Hatzius also has a refreshingly humble attitude about his ability to forecast the direction of the U.S. economy. "Nobody has a clue," he told me when I met him at Goldman's glassy office on West Street in New York. "It's hugely difficult to forecast the business cycle. Understanding an organism as complex as the economy is very hard." As Hatzius sees it, economic forecasters face three fundamental challenges. First, it is very hard to determine cause and effect from economic statistics alone. Second, the economy is always changing, so explanations of economic behavior that hold in one business cycle may not apply to future ones. And third, as bad as their forecasts have been, the data that economists have to work with isn't much good either. ## Correlations Without Causation The government produces data on literally 45,000 economic indicators each year. ²⁴ Private data providers track as many as *four million* statistics. ²⁵ The temptation that some economists succumb to is to put all this data into a blender and claim that the resulting gruel is haute cuisine. There have been only eleven recessions since the end of World War II. ²⁶ If you have a statistical model that seeks to explain eleven outputs but has to choose from among four million inputs to do so, many of the relationships it identifies are going to be spurious. (This is another classic case of overfitting—mistaking noise for a signal—the problem that befell earthquake forecasters in chapter 5.) Consider how creative you might be when you have a stack of economic variables as thick as a phone book. A once-famous "leading indicator" of economic performance, for instance, was the winner of the Super Bowl. From Super Bowl I in 1967 through Super Bowl XXXI in 1997, the stock market²⁷ gained an average of 14 percent for the rest of the year when a team from the original National Football League (NFL) won the game.²⁸ But it fell by almost 10 percent when a team from the original American Football League (AFL) won instead. Through 1997, this indicator had correctly "predicted" the direction of the stock market in twenty-eight of thirty-one years. A standard test of statistical significance, ²⁹ if taken literally, would have implied that there was only about a 1-in-4,700,000 possibility that the relationship had emerged from chance alone. It was just a coincidence, of course. And eventually, the indicator began to perform badly. In 1998, the Denver Broncos, an original AFL team, won the Super Bowl—supposedly a bad omen. But rather than falling, the stock market gained 28 percent amid the dot-com boom. In 2008, the NFL's New York Giants came from behind to upset the AFL's New England Patriots on David Tyree's spectacular catch—but Tyree couldn't prevent the collapse of the housing bubble, which caused the market to crash by 35 percent. Since 1998, in fact, the stock market has done about 10 percent better when the AFL team won the Super Bowl, exactly the opposite of what the indicator was fabled to predict. How does an indicator that supposedly had just a 1-in-4,700,000 chance of failing flop so badly? For the same reason that, even though the odds of winning the Powerball lottery are only 1 chance in 195 million,³⁰ somebody wins it every few weeks. The odds are hugely against any one person winning the lottery—but millions of tickets are bought, so somebody is going to get lucky. Likewise, of the millions of statistical indicators in the world, a few will have happened to correlate especially well with stock prices or GDP or the unemployment rate. If not the winner of the Super Bowl, it might be chicken production in Uganda. But the relationship is merely coincidental. Although economists might not take the Super Bowl indicator seriously, they can talk themselves into believing that other types of variables—anything that has any semblance of economic meaning—are critical "leading indicators" foretelling a recession or recovery months in advance. One forecasting firm brags about how it looks at four hundred such variables,³¹ far more than the two or three dozen major ones that Hatzius says contain most of the economic substance.* Other forecasters have touted the predictive power of such relatively obscure indicators as the ratio of bookings-to-billings at semiconductor companies.³² With so many economic variables to pick from, you're sure to find something that fits the noise in the past data well. It's much harder to find something that identifies the signal; variables that ^o The substantive variables fall into about a dozen major categories: growth (as measured by GDP and its components), jobs, inflation, interest rates, wages and income, consumer confidence, industrial production, sales and consumer spending, asset prices (like stocks and homes), commodity prices (like oil futures), and measures of fiscal policy and government spending. As you can see, this already gives you plenty to work with, so there is little need to resort to four hundred variables. are leading indicators in one economic cycle often turn out to be lagging ones in the next. Of the seven so-called leading indicators in a 2003 *Inc.* magazine article,³³ all of which had been good predictors of the 1990 and 2001 recessions, only two—housing prices and temporary hiring—led the recession that began in 2007 to any appreciable degree. Others, like commercial lending, did not begin to turn downward until a year *after* the recession began. Even the well-regarded Leading Economic Index, a composite of ten economic indicators published by the Conference Board, has had its share of problems. The Leading Economic Index has generally declined a couple of months in advance of recessions. But it has given roughly as many false alarms—including most infamously in 1984, when it sharply declined for three straight months,³⁴ signaling a recession, but the economy continued to zoom upward at a 6 percent rate of growth. Some studies have even claimed that the Leading Economic Index has no predictive power at all when applied in real time.³⁵ "There's very little that's really predictive," Hatzius told me. "Figuring out what's truly causal and what's correlation is very difficult to do." Most of you will have heard the maxim "correlation does not imply causation." Just because two variables have a statistical relationship with each other does not mean that one is responsible for the other. For instance, ice cream sales and forest fires are correlated because both occur more often in the summer heat. But there is no causation; you don't light a patch of the Montana brush on fire when you buy a pint of Häagen-Dazs. If this concept is easily expressed, however, it can be hard to apply in practice, particularly when it comes to understanding the causal relationships in the economy. Hatzius noted, for instance, that the unemployment rate is usually taken to be a lagging indicator. And sometimes it is. After a recession, businesses may not hire new employees until they are confident about the prospects for recovery, and it can take a long time to get all the unemployed back to work again. But the unemployment rate can also be a leading indicator for consumer demand, since unemployed people don't have much ability to purchase new goods and services. During recessions, the economy can fall into a vicious cycle: businesses won't hire until they see more consumer demand, but consumer demand is low because businesses aren't hiring and consumers can't afford their products. Consumer confidence is another notoriously tricky variable. Sometimes consumers are among the first to pick up warning signs in the economy. But they can also be among the last to detect recoveries, with the public often perceiving the economy to be in recession long after a recession is technically over. Thus, economists debate whether consumer confidence is a leading or lagging indicator, ³⁶ and the answer may be contingent on the point in the business cycle the economy finds itself at. Moreover, since consumer confidence affects consumer behavior, there may be all kinds of feedback loops between expectations about the economy and the reality of it. ## An Economic Uncertainty Principle Perhaps an even more problematic set of feedback loops are those between economic forecasts and economic policy. If, for instance, the economy is forecasted to go into recession, the government and the Federal Reserve will presumably take steps to ameliorate the risk or at least soften the blow. Part of the problem, then, is that forecasters like Hatzius have to predict political decisions as well as economic ones, which can be a challenge in a country where the Congress has a 10 percent approval rating. But this issue also runs a little deeper. As pointed out by the Nobel Prize-winning economist Robert Lucas³⁷ in 1976, the past data that an economic model is premised on resulted in part from policy decisions in place at the time. Thus, it may not be enough to know what current policy makers will do; you also need to know what fiscal and monetary policy looked like during the Nixon administration. A related doctrine known as Goodhart's law, after the London School of Economics professor who proposed it,³⁸ holds that once policy makers begin to target a particular variable, it may begin to lose its value as an economic indicator. For instance, if the government artificially takes steps to inflate housing prices, they might well increase, but they will no longer be good measures of overall economic health. At its logical extreme, this is a bit like the observer effect (often mistaken for a related concept, the Heisenberg uncertainty principle): once we begin to measure something, its behavior starts to change. Most statistical models are built on the notion that there are independent variables and dependent variables, in- puts and outputs, and they can be kept pretty much separate from one another.³⁹ When it comes to the economy, they are all lumped together in one hot mess. # An Ever-Changing Economy Even if they could resolve all these problems, economists would still have to contend with a moving target. The American and global economies are always evolving, and the relationships between different economic variables can change over the course of time. Historically, for instance, there has been a reasonably strong correlation between GDP growth and job growth. Economists refer to this as Okun's law. During the Long Boom of 1947 through 1999, the rate of job growth⁴⁰ had normally been about half the rate of GDP growth, so if GDP increased by 4 percent during a year, the number of jobs would increase by about 2 percent. The relationship still exists—more growth is certainly better for job seekers. But its dynamics seem to have changed. After each of the last couple of recessions, considerably fewer jobs were created than would have been expected during the Long Boom years. In the year after the stimulus package was passed in 2009, for instance, GDP was growing fast enough to create about two million jobs according to Okun's law.⁴¹ Instead, an additional 3.5 million jobs were *lost* during the period. Economists often debate about what the change means. The most pessimistic interpretation, advanced by economists including Jeffrey Sachs of Columbia University, is that the pattern reflects profound structural problems in the American economy: among them, increasing competition from other countries, an imbalance between the service and manufacturing sectors, an aging population, a declining middle class, and a rising national debt. Under this theory, we have entered a new and unhealthy normal, and the problems may get worse unless fundamental changes are made. "We were underestimating the role of global change in causing U.S. change," Sachs told me. "The loss of jobs internationally to China and emerging markets have really jolted the American economy." The bigger question is whether the volatility of the 2000s is more representative of the long-run condition of the economy—perhaps the long boom years had been the outlier. During the Long Boom, the economy was in recession only 15 percent of the time. But the rate was more than twice that—36 percent—from 1900 through 1945.⁴² Although most economists believe that some progress has been made in stabilizing the business cycle, we may have been lucky to avoid more problems. This particularly holds in the period between 1983 and 2006—a subset of the Long Boom that is sometimes called the Great Moderation—when the economy was in recession just 3 percent of the time. But much of the growth was fueled by large increases in government and consumer debt, as well as by various asset-price bubbles. Advanced economies have no divine right to grow at Great Moderation rates: Japan's, which grew at 5 percent annually during the 1980s, has grown by barely one percent per year since then.⁴³ This may be one reason why forecasters and policy makers were taken so much by surprise by the depth of the 2007 recession. Not only were they failing to account for events like the Great Depression*—they were sometimes calibrating their forecasts according to the Great Moderation years, which were an outlier, historically speaking. ## Don't Throw Out Data The Federal Open Market Committee, which is charged with setting interest rates, is required by law to release macroeconomic forecasts to Congress at least twice per year. The Fed was in some ways ahead of the curve by late 2007: their forecasts of GDP growth were slightly more bearish than those issued by private-sector forecasters, prompting them to lower interest rates four times toward the end of the year. Still, in the Fed's extensive minutes from a late October 2007 meeting, the term "recession" was not used even once in its discussion of the economy. The Fed is careful with its language, and the possibility of a recession may nevertheless have been implied through the use of phrases like *downside risks*. But they ^{*} This may be in part because the economic data from before World War II is quite incomplete. were not betting on a recession (their forecast still projected growth), and there was little indication that they were entertaining the possibility of as severe a recession as actually unfolded. Part of the reason may have been that the Fed was looking at data from the Great Moderation years to set their expectations for the accuracy of their forecasts. In particular, they relied heavily upon a paper that looked at how economic forecasts had performed from 1986 through 2006.⁴⁵ The problem with looking at only these years is that they contained very little economic volatility: just two relatively mild recessions in 1990–1991 and in 2001. "By gauging current uncertainty with data from the mid-1980s on," the authors warned, "we are implicitly assuming that the calm conditions since the Great Moderation will persist into the future." This was an awfully big assumption to make. The Fed may have concluded that a severe recession was unlikely in 2007 in part because they had chosen to ignore years in which there were severe recessions. A forecaster should almost never ignore data, especially when she is studying rare events like recessions or presidential elections, about which there isn't very much data to begin with. Ignoring data is often a tip-off that the forecaster is overconfident, or is overfitting her model—that she is interested in showing off rather than trying to be accurate. In this particular case, it was not obvious that economists had improved much at forecasting the business cycle. In figure 6-5a, I've compared predicted levels of GDP growth from the Survey of Professional Forecasters against the actual figures for the years 1968 through 1985—these are the years the Fed could have looked at but chose to throw out. You'll see there's quite a lot of economic volatility in this period, such as during the inflation-driven recessions of the mid-1970s and early 1980s. Still, the results are not completely discouraging for forecasters, in that the forecasted and actual outcomes have a reasonably strong correlation with one another. If you make the same plot for the years 1986 through 2006 (as in figure 6-5b), you'll find just the reverse. Most of the data points—both the forecasted values for GDP and the actual ones—are bunched closely together in a narrow range between about 2 percent and 5 percent annual growth. Because there was so little volatility during this time, the average error in the forecast was less FIGURE 6-5A: GDP FORECASTS VERSUS ACTUAL GDP, 1968-1985 than in the previous period.* However, to the extent there was any variability in the economy, like the mild recessions of 1990–91 or in 2001, the forecasts weren't doing a very good job of capturing it—in fact, there was almost no correlation between the predicted and actual results. There was little indication that economists had become more skilled at forecasting the course of the economy. Instead, their jobs had become temporarily easier because of the calm economic winds, as a weather forecaster in Honolulu faces an easier task than one in Buffalo. The other rationale you'll sometimes hear for throwing out data is that there has been some sort of fundamental shift in the problem you are trying to solve. Sometimes these arguments are valid to a certain extent: the American economy is a constantly evolving thing and periodically undergoes structural shifts (recently, for instance, from an economy dominated by manufacturing ^{*} The root-mean squared error for the forecasts in these years was 1.1 points of GDP, versus 2.3 points for the years 1968–85. FIGURE 6-5B: GDP FORECASTS VERSUS ACTUAL GDP, 1986-2006 to one dominated by its service sector). This isn't baseball, where the game is always played by the same rules. The problem with this is that you never know when the *next* paradigm shift will occur, and whether it will tend to make the economy more volatile or less so, stronger or weaker. An economic model conditioned on the notion that nothing major will change is a useless one. But anticipating these turning points is not easy. # Economic Data Is Very Noisy The third major challenge for economic forecasters is that their raw data isn't much good. I mentioned earlier that economic forecasters rarely provide their prediction intervals when they produce their forecasts—probably because doing so would undermine the public's confidence in their expertise. "Why do people not give intervals? Because they're embarrassed," Hatzius says. "I think that's the reason. People are embarrassed." The uncertainty, however, applies not just to economic forecasts but also to the economic variables themselves. Most economic data series are subject to revision, a process that can go on for months and even years after the statistics are first published. The revisions are sometimes enormous. 46 One somewhat infamous example was the government's estimate of GDP growth in the last quarter of 2008. Initially reported as "only" a 3.8 percent rate of decline, the economy is now believed to have been declining at almost 9 percent. Had they known the real size of the economic hole, the White House's economists might have pushed for a larger stimulus package in January 2009, or they might have realized how deep the problems were and promoted a longer-term solution rather than attempting a quick fix. Large errors like these have been fairly common. Between 1965 and 2009,⁴⁷ the government's initial estimates of quarterly GDP were eventually revised, on average, by 1.7 points. That is the average change; the range of possible changes in each quarterly GDP is higher still, and the margin of error⁴⁸ on an initial quarterly GDP estimate is plus or minus 4.3 percent. That means there's a chance that the economy will turn out to have been in recession even if the government had initially reported above-average growth, or vice versa. The government first reported that the economy had grown by 4.2 percent in the fourth quarter of 1977, for instance, but that figure was later revised to negative 0.1 percent.⁴⁹ So we should have some sympathy for economic forecasters.⁵⁰ It's hard enough to know where the economy is going. But it's much, much harder if you don't know where it is to begin with. ## A Butterfly Flaps Its Wings in Brazil and Someone Loses a Job in Texas The challenge to economists might be compared to the one faced by weather forecasters. They face two of the same fundamental problems. First, the economy, like the atmosphere, is a dynamic system: everything affects everything else and the systems are perpetually in motion. In meteorology, this problem is quite literal, since the weather is subject to chaos theory—a butterfly flapping its wings in Brazil can theoretically cause a tornado in Texas. But in loosely the same way, a tsunami in Japan or a longshoreman's strike in Long Beach can affect whether someone in Texas finds a job. Second, weather forecasts are subject to uncertain initial conditions. The probabilistic expression of weather forecasts ("there's a 70 percent chance of rain") arises not because there is any inherent randomness in the weather. Rather, the problem is that meteorologists assume they have imprecise measurements of what the initial conditions were like, and weather patterns (because they are subject to chaos theory) are extremely sensitive to changes in the initial conditions. In economic forecasting, likewise, the quality of the initial data is frequently quite poor. Weather prediction, however, is one of the real success stories in this book. Forecasts of everything from hurricane trajectories to daytime high temperatures have gotten much better than they were even ten or twenty years ago, thanks to a combination of improved computer power, better data-collection methods, and old-fashioned hard work. The same cannot be said for economic forecasting. Any illusion that economic forecasts were getting better ought to have been shattered by the terrible mistakes economists made in advance of the recent financial crisis.⁵¹ If the meteorologist shares some of the economist's problems of a dynamic system with uncertain initial conditions, she has a wealth of hard science to make up for it. The physics and chemistry of something like a tornado are not all that complicated. That does not mean that tornadoes are easy to predict. But meteorologists have a strong fundamental understanding of what causes tornadoes to form and what causes them to dissipate. Economics is a much softer science. Although economists have a reasonably sound understanding of the basic systems that govern the economy, the cause and effect are all blurred together, especially during bubbles and panics when the system is flushed with feedback loops contingent on human behavior. Nevertheless, if discerning cause and effect is difficult for economists, it is probably better to try than just give up. Consider again, for instance, what Hatzius wrote on November 15, 2007: The likely mortgage credit losses pose a significantly bigger macroeconomic risk than generally recognized. . . . The macroeconomic consequences could be quite dramatic. If leveraged investors see \$200 [billion in] aggregate credit loss, they might need to scale back their lending by \$2 trillion. This is a large shock. . . . It is easy to see how such a shock could produce a substantial recession or a long period of very sluggish growth. Consumers had been extended too much credit, Hatzius wrote, to pay for homes that the housing bubble had made unaffordable. Many of them had stopped making their mortgage payments, and there were likely to be substantial losses from this. The degree of leverage in the system would compound the problem, paralyzing the credit market and the financial industry more broadly. The shock might be large enough to trigger a severe recession. And this is exactly how the financial crisis played out. Not only was Hatzius's forecast correct, but it was also right for the right reasons, explaining the causes of the collapse and anticipating the effects. Hatzius refers to this chain of cause and effect as a "story." It is a story about the economy—and although it might be a data-driven story, it is one grounded in the real world. In contrast, if you just look at the economy as a series of variables and equations without any underlying structure, you are almost certain to mistake noise for a signal and may delude yourself (and gullible investors) into thinking you are making good forecasts when you are not. Consider what happened to one of Hatzius's competitors, the forecasting firm ECRI. In September 2011, ECRI predicted a near certainty of a "double dip" recession. "There's nothing that policy makers can do to head it off," it advised.⁵² "If you think this is a bad economy, you haven't seen anything yet." In interviews, the managing director of the firm, Lakshman Achuthan, suggested the recession would begin almost immediately if it hadn't started already.⁵³ The firm described the reasons for its prediction in this way: ECRI's recession call isn't based on just one or two leading indexes, but on dozens of specialized leading indexes, including the U.S. Long Leading Index . . . to be followed by downturns in the Weekly Leading Index and other shorter-leading indexes. In fact, the most reliable forward-looking in- dicators are now collectively behaving as they did on the cusp of full-blown recessions.⁵⁴ There's plenty of jargon, but what is lacking in this description is any actual economic substance. Theirs was a story about data—as though data itself caused recessions—and not a story about the economy. ECRI actually seems quite proud of this approach. "Just as you do not need to know exactly how a car engine works in order to drive safely," it advised its clients in a 2004 book, "You do not need to understand all the intricacies of the economy to accurately read those gauges." ⁵⁵ This kind of statement is becoming more common in the age of Big Data.⁵⁶ Who needs theory when you have so much information? But this is categorically the wrong attitude to take toward forecasting, especially in a field like economics where the data is so noisy. Statistical inferences are much stronger when backed up by theory or at least some deeper thinking about their root causes. There were certainly reasons for economic pessimism in September 2011⁵⁷—for instance, the unfolding debt crisis in Europe—but ECRI wasn't looking at those. Instead, it had a random soup of variables that mistook correlation for causation.⁵⁸ Indeed, the ECRI forecast seemed to demark an economic turning point—but it was a *positive* one. The S&P 500 gained 21 percent in the five months after ECRI announced its recession call,⁵⁹ while GDP growth registered at a fairly healthy clip of 3.0 percent in the last quarter of 2011 instead of going into recession. ECRI kicked the can down the road, "clarifying" the call to say that it extended all the way into 2012 even though this is not what they had implied originally.⁶⁰ ## When Biased Forecasts Are Rational If you're looking for an economic forecast, the best place to turn is the average or aggregate prediction rather than that of any one economist. My research into the Survey of Professional Forecasters suggests that these aggregate forecasts are about 20 percent more accurate⁶¹ than the typical individual's forecast at predicting GDP, 10 percent better at predicting unemployment, and 30 percent better at predicting inflation. This property—group forecasts beat individual ones—has been found to be true in almost every field in which it has been studied. And yet while the notion that aggregate forecasts beat individual ones is an important empirical regularity, it is sometimes used as a cop-out when forecasts might be improved. The aggregate forecast is made up of individual forecasts; if those improve, so will the group's performance. Moreover, even the aggregate economic forecasts have been quite poor in any real-world sense, so there is plenty of room for progress. Most economists rely on their judgment to some degree when they make a forecast, rather than just take the output of a statistical model as is. Given how noisy the data is, this is probably helpful. A study⁶² by Stephen K. McNess, the former vice president of the Federal Reserve Bank of Boston, found that judgmental adjustments to statistical forecasting methods resulted in forecasts that were about 15 percent more accurate. The idea that a statistical model would be able to "solve" the problem of economic forecasting was somewhat in vogue during the 1970s and 1980s when computers came into wider use. But as was the case in other fields, like earthquake forecasting during that time period, improved technology did not cover for the lack of theoretical understanding about the economy; it only gave economists faster and more elaborate ways to mistake noise for a signal. Promising-seeming models failed badly at some point or another and were consigned to the dustbin.⁶³ Invoking one's judgment, however, also introduces the potential for bias. You may make the forecast that happens to fit your economic incentives or your political beliefs. Or you may be too proud to change your story even when the facts and circumstances demand it. "I do think that people have the tendency, which needs to be actively fought," Hatzius told me, "to see the information flow the way you want to see it." Are some economists better at managing this trade-off than others? Is the economist who called the last recession right more likely to get the next one too? This question has an interesting answer. Statistical tests designed to identify predictive skill have generally come up with negative results when applied to the Survey of Professional Forecasters.⁶⁴ That is, if you look at that survey, there doesn't seem to be much evidence that some economists are consistently better than others. Studies of another panel, the Blue Chip Economic Survey, have more often come up with positive findings, however.⁶⁵ There is clearly a lot of luck involved in economic forecasting—economists who are permanently bearish or bullish are guaranteed to be right every now and then. But the studies of the Blue Chip panel seem to find that some economists do a little bit better than others over the long run. What is the difference between the two surveys? The Survey of Professional Forecasters is conducted anonymously: each economist is assigned a random ID number that remains constant from survey to survey, but nothing is revealed about just who he is or what he does. In the Blue Chip panel, on the other hand, everybody's forecast has his name and reputation attached to it. When you have your name attached to a prediction, your incentives may change. For instance, if you work for a poorly known firm, it may be quite rational for you to make some wild forecasts that will draw big attention when they happen to be right, even if they aren't going to be right very often. Firms like Goldman Sachs, on the other hand, might be more conservative in order to stay within the consensus. Indeed, this exact property has been identified in the Blue Chip forecasts:⁶⁶ one study terms the phenomenon "rational bias."⁶⁷ The less reputation you have, the less you have to lose by taking a big risk when you make a prediction. Even if you know that the forecast is dodgy, it might be rational for you to go after the big score. Conversely, if you have already established a good reputation, you might be reluctant to step too far out of line even when you think the data demands it. Either of these reputational concerns potentially distracts you from the goal of making the most honest and accurate forecasts—and they probably worsen forecasts on balance. Although the differences are modest, historically the anonymous participants in the Survey of Professional Forecasters have done slightly better at predicting GDP and unemployment than the reputation-minded Blue Chip panelists.⁶⁸ ## Overcoming Bias If it can be rational to produce bad forecasts, that implies there are consumers of these forecasts who aid and abet them. Just as there are political pundits who make careers out of making implausible claims to partisan audiences, there are bears, bulls, and contrarians who will always have a constituency in the market-place for economic ideas. (Sometimes economic forecasts have expressly political purposes too. It turns out that the economic forecasts produced by the White House, for instance, have historically been among the least accurate of all, ⁶⁹ regardless of whether it's a Democrat or a Republican in charge.) When it comes to economic forecasting, however, the stakes are higher than for political punditry. As Robert Lucas pointed out, the line between economic forecasting and economic policy is very blurry; a bad forecast can make the real economy worse. There may be some hope at the margin for economic forecasting to benefit from further technological improvements. Things like Google search traffic patterns, for instance, can serve as leading indicators for economic data series like unemployment. "The way we think about it is if you take something like initial claims on unemployment insurance, that's a very good predictor for unemployment rates, which is a good predictor for economic activity," I was told by Google's chief economist, Hal Varian, at Google's headquarters in Mountain View, California. "We can predict unemployment initial claims earlier because if you're in a company and a rumor goes around that there are going to be layoffs, then people start searching 'where's the unemployment office,' 'how am I going to apply for unemployment,' and so on. It's a slightly leading indicator." Still, the history of forecasting in economics and other fields suggests that technological improvements may not help much if they are offset by human biases, and there is little indication that economic forecasters have overcome these. For instance, they do not seem to have been chastened much by their experience with the Great Recession. If you look at the forecasts for GDP growth that the Survey of Professional Forecasters made in November 2011 (figure 6-6), it still exhibited the same tendency toward overconfidence that we FIGURE 6-6: FORECASTED PROBABILITY DISTRIBUTION: REAL U.S. GDP GROWTH (2012) COMPARED AGAINST HISTORICAL FORECAST ERRORS Survey of Professional Forecasters, November 2011 saw in 2007, with forecasters discounting both upside and downside economic scenarios far more than is justified by the historical accuracy of their forecasts.⁷⁰ - Historical Distribution of Forecast Errors If we want to reduce these biases—we will never be rid of them entirely—we have two fundamental alternatives. One might be thought of as a supply-side approach—creating a market for accurate economic forecasts. The other might be a demand-side alternative: reducing demand for inaccurate and overconfident ones. Robin Hanson, an economist at George Mason University, is an advocate of the supply-side alternative. I met him for lunch at one of his favorite Moroccan places in northern Virginia. He's in his early fifties but looks much younger (despite being quite bald), and is a bit of an eccentric. He plans to have his head cryogenically frozen when he dies. He is also an advocate of a system he calls "futarchy" in which decisions on policy issues are made by prediction markets rather than politicians. He is clearly not a man afraid to challenge the conventional wisdom. Instead, Hanson writes a blog called Overcoming Bias, in which he presses his readers to consider which cultural taboos, ideological beliefs, or misaligned incentives might constrain them from making optimal decisions. "I think the most interesting question is how little effort we actually put into forecasting, even on the things we say are important to us," Hanson told me as the food arrived. "In an MBA school you present this image of a manager as a great decision maker—the scientific decision maker. He's got his spreadsheet and he's got his statistical tests and he's going to weigh the various options. But in fact real management is mostly about managing coalitions, maintaining support for a project so it doesn't evaporate. If they put together a coalition to do a project, and then at the last minute the forecasts fluctuate, you can't dump the project at the last minute, right? "Even academics aren't very interested in collecting a track record of forecasts—they're not very interested in making clear enough forecasts to score," he says later. "What's in it for them? The more fundamental problem is that we have a demand for experts in our society but we don't actually have that much of a demand for accurate forecasts." Hanson, in order to address this deficiency, is an advocate of prediction markets—systems where you can place bets on a particular economic or policy outcome, like whether Israel will go to war with Iran, or how much global temperatures will rise because of climate change. His argument for these is pretty simple: they ensure that we have a financial stake in being accurate when we make forecasts, rather than just trying to look good to our peers. We will revisit the idea of prediction markets in chapter 11; they are not a panacea, particularly if we make the mistake of assuming that they can never go wrong. But as Hansen says, they can yield some improvement by at least getting everyone's incentives in order. One of the most basic applications might simply be markets for predicting macroeconomic variables like GDP and unemployment. There are already a variety of direct and indirect ways to bet on things like inflation, interest rates, and commodities prices, but no high-volume market for GDP exists. There could be a captive audience for these markets: common stocks have become more highly correlated with macroeconomic risks in recent years, 73 so they could provide a means of hedging against them. These markets would also provide real-time information to policy makers, essentially serving as continuously updated forecasts of GDP. Adding options to the markets—bets on, say, whether GDP might grow by 5 percent, or decline by 2 percent—would punish overconfident forecasters and yield more reliable estimates of the uncertainties inherent in forecasting the economy. The other solution, the "demand-side" approach, is slower and more incremental. It simply means that we have to be better consumers of forecasts. In the context of the economic forecasting, that might mean turning the spotlight away from charlatans with "black box" models full of random assortments of leading indicators and toward people like Jan Hatzius who are actually talking economic substance. It might also mean placing more emphasis on the noisiness of economic indicators and economic forecasts. Perhaps initial estimates of GDP should be reported with margins of error, just as political polls are. More broadly, it means recognizing that the amount of confidence someone expresses in a prediction is not a good indication of its accuracy—to the contrary, these qualities are often inversely correlated. Danger lurks, in the economy and elsewhere, when we discourage forecasters from making a full and explicit account of the risks inherent in the world around us.